Spatial-Spectral Autoencoder Networks for Hyperspectral Unmixing

被引:13
|
作者
Huang, Yongfa [1 ]
Li, Jie [1 ]
Qi, Lin [1 ]
Wang, Ying [1 ]
Gao, Xinbo [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
关键词
Hyperspectral unmixing; deep autoencoder network; spatial-spectral information; convolution neural network(CNN);
D O I
10.1109/IGARSS39084.2020.9324696
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a spatial-spectral autoencoder (SSAE) for hyperspectral unmixing, including a net for endmember extraction (EENet) and a net for abundance estimation (AENet). The EENet exploits the spatial information in hyperspectral image by a "many to one" strategy, i.e., the abundance of a pixel is combined by the abundances of its adjacent pixels. The idea is based on the assumption: once an endmember is mixed in a pixel, it is mixed in the surrounding pixels with high probability. The strategy promotes a continuous and smooth spatial distribution of abundances, and it is more effective than the other methods for endmember extraction. Besides, to make full use of the rich spectral information and obtain more accurate abundances, we design an AENet, which applies the deep convolutional neural network to estimate the abundances with the endmembers acquired from the EENet. The experiments are conducted on two real datasets, which show the SSAE outperforms the state-of-the-art methods.
引用
收藏
页码:2396 / 2399
页数:4
相关论文
共 50 条
  • [1] CONVOLUTIONAL AUTOENCODER FOR SPATIAL-SPECTRAL HYPERSPECTRAL UNMIXING
    Palsson, Burkni
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 357 - 360
  • [2] A Global Spatial-Spectral Feature Fused Autoencoder for Nonlinear Hyperspectral Unmixing
    Zhang, Mingle
    Yang, Mingyu
    Xie, Hongyu
    Yue, Pinliang
    Zhang, Wei
    Jiao, Qingbin
    Xu, Liang
    Tan, Xin
    REMOTE SENSING, 2024, 16 (17)
  • [3] SSF-Net: A Spatial-Spectral Features Integrated Autoencoder Network for Hyperspectral Unmixing
    Wang, Bin
    Yao, Huizheng
    Song, Dongmei
    Zhang, Jie
    Gao, Han
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1781 - 1794
  • [4] A Fast Spatial-Spectral NMF for Hyperspectral Unmixing
    Ince, Taner
    Dobigeon, Nicolas
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [5] Improved Spatial-Spectral Superpixel Hyperspectral Unmixing
    Alkhatib, Mohammed Q.
    Velez-Reyes, Miguel
    REMOTE SENSING, 2019, 11 (20)
  • [6] MULTITASK LEARNING FOR SPATIAL-SPECTRAL HYPERSPECTRAL UNMIXING
    Palsson, Burkni
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 564 - 567
  • [7] Convolutional Autoencoder for Spectral Spatial Hyperspectral Unmixing
    Palsson, Burkni
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 535 - 549
  • [8] Spatial-spectral collaborative attention network for hyperspectral unmixing
    Chen, Xiaojie
    Meng, Fanlei
    Mo, Ye
    Sun, Haixin
    GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [9] Spatial-Spectral Attention Bilateral Network for Hyperspectral Unmixing
    Yang, Zhiru
    Xu, Mingming
    Liu, Shanwei
    Sheng, Hui
    Zheng, Hongxia
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [10] GPU Implementation of Spatial-Spectral Preprocessing for Hyperspectral Unmixing
    Ignacio Jimenez, Luis
    Martin, Gabriel
    Sanchez, Sergio
    Garcia, Carlos
    Bernabe, Sergio
    Plaza, Javier
    Plaza, Antonio
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (11) : 1671 - 1675