Distributed deep learning for cooperative computation offloading in low earth orbit satellite networks

被引:18
|
作者
Tang, Qingqing [1 ]
Fei, Zesong [1 ]
Li, Bin [2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Minist Educ, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing 210003, Peoples R China
基金
国家重点研发计划;
关键词
Low earth orbit satellites; Satellites; Task analysis; Servers; Optimization; Computational modeling; Delays; LEO satellite networks; computation offloading; deep neural networks; TERRESTRIAL NETWORKS; RESOURCE-ALLOCATION; EDGE; OPTIMIZATION; ARCHITECTURE;
D O I
10.23919/JCC.2022.04.017
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Low earth orbit (LEO) satellite network is an important development trend for future mobile communication systems, which can truly realize the "ubiquitous connection" of the whole world. In this paper, we present a cooperative computation offloading in the LEO satellite network with a three-tier computation architecture by leveraging the vertical cooperation among ground users, LEO satellites, and the cloud server, and the horizontal cooperation between LEO satellites. To improve the quality of service for ground users, we optimize the computation offloading decisions to minimize the total execution delay for ground users subject to the limited battery capacity of ground users and the computation capability of each LEO satellite. However, the formulated problem is a large-scale nonlinear integer programming problem as the number of ground users and LEO satellites increases, which is difficult to solve with general optimization algorithms. To address this challenging problem, we propose a distributed deep learning-based cooperative computation offloading (DDLCCO) algorithm, where multiple parallel deep neural networks (DNNs) are adopted to learn the computation offloading strategy dynamically. Simulation results show that the proposed algorithm can achieve near-optimal performance with low computational complexity compared with other computation offloading strategies.
引用
收藏
页码:230 / 243
页数:14
相关论文
共 50 条
  • [31] Satellite Edge Computing With Collaborative Computation Offloading: An Intelligent Deep Deterministic Policy Gradient Approach
    Zhang, Hangyu
    Liu, Rongke
    Kaushik, Aryan
    Gao, Xiangqiang
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (10) : 9092 - 9107
  • [32] Multi-UAV-assisted computation offloading in DT-based networks: A distributed deep reinforcement learning approach
    Shi, Junling
    Li, Chunyu
    Guan, Yunchong
    Cong, Peiyu
    Li, Jie
    COMPUTER COMMUNICATIONS, 2023, 210 : 217 - 228
  • [33] Energy-Minimized Partial Computation Offloading in Satellite-Terrestrial Edge Computing Networks
    Bi, Jing
    Niu, Siyu
    Yuan, Haitao
    Wang, Mengyuan
    Zhai, Jiahui
    Zhang, Jia
    Zhou, Mengchu
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 5931 - 5944
  • [34] Cooperative Multi-Agent Deep Reinforcement Learning for Computation Offloading in Digital Twin Satellite Edge Networks
    Ji, Zhe
    Wu, Sheng
    Jiang, Chunxiao
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (11) : 3414 - 3429
  • [35] Cooperative Multi-Agent Deep Reinforcement Learning for Computation Offloading in Digital Twin Satellite Edge Networks
    Ji, Zhe
    Wu, Sheng
    Jiang, Chunxiao
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (10) : 3414 - 3429
  • [36] Multi-Agent Deep Reinforcement Learning for Computation Offloading and Interference Coordination in Small Cell Networks
    Huang, Xiaoyan
    Leng, Supeng
    Maharjan, Sabita
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (09) : 9282 - 9293
  • [37] Optimizing Energy Efficiency in Vehicular Edge-Cloud Networks Through Deep Reinforcement Learning-Based Computation Offloading
    Elgendy, Ibrahim A.
    Muthanna, Ammar
    Alshahrani, Abdullah
    Hassan, Dina S. M.
    Alkanhel, Reem
    Elkawkagy, Mohamed
    IEEE ACCESS, 2024, 12 : 191537 - 191550
  • [38] Energy Efficient Joint Computation Offloading and Service Caching for Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Zhou, Huan
    Zhang, Zhenyu
    Wu, Yuan
    Dong, Mianxiong
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2023, 7 (02): : 950 - 961
  • [39] Joint Service Caching and Computation Offloading Scheme Based on Deep Reinforcement Learning in Vehicular Edge Computing Systems
    Xue, Zheng
    Liu, Chang
    Liao, Canliang
    Han, Guojun
    Sheng, Zhengguo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 6709 - 6722
  • [40] Reliable Computation Offloading of DAG Applications in Internet of Vehicles Based on Deep Reinforcement Learning
    Su, Shengchao
    Yuan, Pengtao
    Dai, Yufeng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 2116 - 2128