Mimetic finite difference methods for Hamiltonian wave equations in 2D

被引:21
作者
da Veiga, L. Beirao [1 ]
Lopez, L. [2 ,3 ]
Vacca, G. [1 ]
机构
[1] Univ Milano Bicocca, Dept Math & Applicat, Via R Cozzi 55, I-20125 Milan, Italy
[2] Univ Bari, Dept Math, Via E Orabona 4, I-70125 Bari, Italy
[3] CNR, Ist Ric Acque, Via F De Blasio 5, I-70132 Bari, Italy
关键词
Mimetic finite difference methods; Polygonal meshes; Hamiltonian systems; VARIATIONAL DISCRETIZATION; DIFFUSION-PROBLEMS; CONVERGENCE; INTEGRATORS; SCHEMES;
D O I
10.1016/j.camwa.2017.05.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
fIn this paper we consider the numerical solution of the Hamiltonian wave equation in two spatial dimensions. We construct a two step procedure in which we first discretize the space by the Mimetic Finite Difference (MFD) method and then we employ a standard symplectic scheme to integrate the semi-discrete Hamiltonian system derived. The main characteristic of the MFD methods, when applied to stationary problems, is to mimic important properties of the continuous system. This approach yields a full numerical procedure suitable to integrate Hamiltonian problems. A complete theoretical analysis of the method and some numerical simulations are developed in the paper. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1123 / 1141
页数:19
相关论文
共 38 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]  
[Anonymous], 2010, SPRINGER SERIES COMP
[3]  
[Anonymous], 2004, CAMBRIDGE MONOGRAPHS
[4]  
[Anonymous], 1996, SYMBOLIC NUMERIC COM
[5]  
BAKER GA, 1980, NONLINEAR ANAL-THEOR, V4, P579
[6]  
BRENNER S. C., 2008, Texts in Applied Mathematics, V3rd, DOI DOI 10.1007/978-0-387-75934-0
[7]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896
[8]   A family of mimetic finite difference methods on polygonal and polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Simoncini, V .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (10) :1533-1551
[9]   Mimetic scalar products of discrete differential forms [J].
Brezzi, F. ;
Buffa, A. ;
Manzini, G. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 :1228-1259
[10]   A new discretization methodology for diffusion problems on generalized polyhedral meshes [J].
Brezzi, Franco ;
Lipnikov, Konstantin ;
Shashkov, Mikhail ;
Simoncini, Valeria .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) :3682-3692