GLOBAL STABILIZATION OF THE FULL ATTRACTION-REPULSION KELLER-SEGEL SYSTEM

被引:92
作者
Jin, Hai-Yang [1 ]
Wang, Zhi-An [2 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510640, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
关键词
Chemotaxis; attraction-repulsion; global stability; exponential decay rate; LARGE-TIME BEHAVIOR; BLOW-UP; CHEMOTAXIS SYSTEM; PATTERN-FORMATION; EXISTENCE; MODEL; AGGREGATION; BOUNDEDNESS; DYNAMICS;
D O I
10.3934/dcds.2020027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the following full Attraction-Repulsion Keller-Segel (ARKS) system {u(t) = Delta u - del (.) (chi u del v) + del (.) (xi u del w), x is an element of Omega, t > 0, v(t) = D(1)v + alpha u - beta v, x is an element of Omega, t > 0, ((*)) w(t) = D-2 Delta w + gamma u - delta w, x is an element of Omega, t > 0, u(x, 0) = u(0)(x), v(x, 0) = v(0)(x), w(x, 0) = w(0)(x) x is an element of Omega, in a bounded domain It Omega subset of R-2 with smooth boundary subject to homogeneous Neumann boundary conditions. By constructing an appropriate Lyapunov functions, we establish the boundedness and asymptotical behavior of solutions to the system ((*)) with large initial data (u(0), v(0), w(0)) is an element of [W-1, (infinity) (Omega)](3). Precisely, we show that if the parameters satisfy xi gamma/chi alpha >= max { D-1/D-2, D-2/D-1, beta/delta, delta/beta} for all positive parameters D-1, D-2, chi, xi, alpha, beta, gamma, and delta, the system ((*)) has a unique global classical solution (u, v, w), which converges to the constant steady state ((u) over bar (0), alpha/beta(u) over bar (0), gamma/delta (u) over bar (0)) as t -> +infinity, where (u) over bar (0) = 1/vertical bar Omega vertical bar integral(Omega) u(0)dx. Furthermore, the decay rate is exponential if xi gamma/chi alpha > max {beta/delta, delta/beta}. This paper provides the first results on the full ARKS system with unequal chemical diffusion rates (i.e. D-1 not equal D-2) in multi-dimensions.
引用
收藏
页码:3509 / 3527
页数:19
相关论文
共 30 条
[1]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[2]  
Bourguignon J.P., 1974, J. Func. Anal, V15, P341, DOI DOI 10.1016/0022-1236(74)90027-5
[3]   Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities [J].
Carrillo, JA ;
Jüngel, A ;
Markowich, PA ;
Toscani, G ;
Unterreiter, A .
MONATSHEFTE FUR MATHEMATIK, 2001, 133 (01) :1-82
[4]  
Cieslak T., 2008, PARABOLIC NAVIER STO, V81, P105
[5]   Global existence and blow-up for a system describing the aggregation of microglia [J].
Espejo, Elio ;
Suzuki, Takashi .
APPLIED MATHEMATICS LETTERS, 2014, 35 :29-34
[6]   Blow-up in a chemotaxis model without symmetry assumptions [J].
Horstmann, D ;
Wang, GF .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2001, 12 :159-177
[7]  
Horstmann D., 2003, I, V105, P103
[8]   Boundedness, blowup and critical mass phenomenon in competing chemotaxis [J].
Jin, Hai-Yang ;
Wang, Zhi-An .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) :162-196
[9]   Large time behavior of the full attraction-repulsion Keller-Segel system in the whole space [J].
Jin, Hai-Yang ;
Liu, Zhengrong .
APPLIED MATHEMATICS LETTERS, 2015, 47 :13-20
[10]   Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model [J].
Jin, Hai-Yang ;
Wang, Zhi-An .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (03) :444-457