Synchronization of uncertain fractional-order chaotic systems via the fractional-order sliding mode controller

被引:0
作者
Yan, Xiaomei [1 ]
Shang, Ting [1 ]
Zhao, Xiaoguo [2 ]
Ji, Ruirui [1 ]
机构
[1] Xian Univ Technol, Fac Automat & Informat Engn, Xian 710048, Peoples R China
[2] Xian Univ Architecture & Technol, Sch Mech & Elect Engn, Xian 710055, Peoples R China
来源
PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC) | 2016年
关键词
synchronization; fractional-order; chaotic system; uncertain; sliding mode control; PROJECTIVE SYNCHRONIZATION; SECURE COMMUNICATION; EQUATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For synchronization of uncertain fractional-order chaotic systems with model uncertainties and external disturbances, this paper presents a novel fractional-order sliding mode controller. The fractional-order controller is formed by introducing fractional order reaching law into sliding mode control. Based on Lyapunov stability theory and stability theorem of fractional-order system, the controlled system's stability is analyzed. Numerical simulations are given to illustrate the effectiveness and the robustness of the proposed controller.
引用
收藏
页码:1444 / 1449
页数:6
相关论文
共 32 条
[1]   Synchronization of fractional order chaotic systems using active control method [J].
Agrawal, S. K. ;
Srivastava, M. ;
Das, S. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (06) :737-752
[2]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[3]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]   FRACTAL SYSTEM AS REPRESENTED BY SINGULARITY FUNCTION [J].
CHAREF, A ;
SUN, HH ;
TSAO, YY ;
ONARAL, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1465-1470
[6]   Secure digital communication using controlled projective synchronisation of chaos [J].
Chee, CY ;
Xu, DL .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :1063-1070
[7]   Fractional Order Control - A Tutorial [J].
Chen, YangQuan ;
Petras, Ivo ;
Xue, Dingyue .
2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, :1397-+
[8]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[9]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22
[10]  
Diethelm K., 1997, ELECT T NUMERICAL AN, V5