Synchronization of uncertain fractional-order chaotic systems via the fractional-order sliding mode controller

被引:0
作者
Yan, Xiaomei [1 ]
Shang, Ting [1 ]
Zhao, Xiaoguo [2 ]
Ji, Ruirui [1 ]
机构
[1] Xian Univ Technol, Fac Automat & Informat Engn, Xian 710048, Peoples R China
[2] Xian Univ Architecture & Technol, Sch Mech & Elect Engn, Xian 710055, Peoples R China
来源
PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC) | 2016年
关键词
synchronization; fractional-order; chaotic system; uncertain; sliding mode control; PROJECTIVE SYNCHRONIZATION; SECURE COMMUNICATION; EQUATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For synchronization of uncertain fractional-order chaotic systems with model uncertainties and external disturbances, this paper presents a novel fractional-order sliding mode controller. The fractional-order controller is formed by introducing fractional order reaching law into sliding mode control. Based on Lyapunov stability theory and stability theorem of fractional-order system, the controlled system's stability is analyzed. Numerical simulations are given to illustrate the effectiveness and the robustness of the proposed controller.
引用
收藏
页码:1444 / 1449
页数:6
相关论文
共 32 条
  • [1] Synchronization of fractional order chaotic systems using active control method
    Agrawal, S. K.
    Srivastava, M.
    Das, S.
    [J]. CHAOS SOLITONS & FRACTALS, 2012, 45 (06) : 737 - 752
  • [2] Chaos in fractional-order autonomous nonlinear systems
    Ahmad, WM
    Sprott, JC
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 16 (02) : 339 - 351
  • [3] Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models
    Ahmed, E.
    El-Sayed, A. M. A.
    El-Saka, H. A. A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) : 542 - 553
  • [4] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [5] FRACTAL SYSTEM AS REPRESENTED BY SINGULARITY FUNCTION
    CHAREF, A
    SUN, HH
    TSAO, YY
    ONARAL, B
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) : 1465 - 1470
  • [6] Secure digital communication using controlled projective synchronisation of chaos
    Chee, CY
    Xu, DL
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (03) : 1063 - 1070
  • [7] Fractional Order Control - A Tutorial
    Chen, YangQuan
    Petras, Ivo
    Xue, Dingyue
    [J]. 2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 1397 - +
  • [8] Detailed error analysis for a fractional Adams method
    Diethelm, K
    Ford, NJ
    Freed, AD
    [J]. NUMERICAL ALGORITHMS, 2004, 36 (01) : 31 - 52
  • [9] A predictor-corrector approach for the numerical solution of fractional differential equations
    Diethelm, K
    Ford, NJ
    Freed, AD
    [J]. NONLINEAR DYNAMICS, 2002, 29 (1-4) : 3 - 22
  • [10] Diethelm K., 1997, ELECT T NUMERICAL AN, V5