Variational formulation for the multisymplectic Hamiltonian systems

被引:12
作者
Chen, JB [1 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
multisymplectic; variation; integrators;
D O I
10.1007/s11005-005-1813-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A variational formulation for the multisymplectic Hamiltonian systems is presented in this Letter. Using this variational formulation, we obtain multisymplectic integrators from a variational perspective. Numerical experiments are also reported.
引用
收藏
页码:243 / 253
页数:11
相关论文
共 10 条
[2]   Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity [J].
Bridges, TJ ;
Reich, S .
PHYSICS LETTERS A, 2001, 284 (4-5) :184-193
[3]   Total variation in Hamiltonian formalism and symplectic-energy integrators [J].
Chen, JB ;
Guo, HY ;
Wu, K .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (04) :1688-1702
[4]   Multisymplectic geometry, local conservation laws and a multisymplectic integrator for the Zakharov-Kuznetsov equation [J].
Chen, JB .
LETTERS IN MATHEMATICAL PHYSICS, 2003, 63 (02) :115-124
[5]   Total variation in discrete multisymplectic field theory and multisymplectic-energy-momentum integrators [J].
Chen, JB .
LETTERS IN MATHEMATICAL PHYSICS, 2002, 61 (01) :63-73
[6]  
Guo HY, 2001, COMMUN THEOR PHYS, V35, P703
[7]   Multisymplectic geometry, variational integrators, and nonlinear PDEs [J].
Marsden, JE ;
Patrick, GW ;
Shkoller, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (02) :351-395
[8]  
Olver P J, 1993, APPL LIE GROUPS DIFF
[9]   Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations [J].
Reich, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 157 (02) :473-499
[10]   Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation [J].
Zhao, PF ;
Qin, MZ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (18) :3613-3626