Local heat transfer distribution and effect of instabilities during flow boiling in a silicon microchannel heat sink

被引:50
作者
Chen, Tailian [3 ]
Garimella, Suresh V. [1 ,2 ]
机构
[1] Purdue Univ, Sch Mech Engn, NSF IUCRC, Cooling Technol Res Ctr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] Gonzaga Univ, Dept Mech Engn, Spokane, WA 99258 USA
关键词
Flow boiling; Microchannels; Boiling regimes; Flow instability; Electronics cooling; DIELECTRIC COOLANT; FLUID; EVAPORATION; MASS;
D O I
10.1016/j.ijheatmasstransfer.2011.04.012
中图分类号
O414.1 [热力学];
学科分类号
摘要
Flow boiling of the perfluorinated dielectric fluid FC-77 in a silicon microchannel heat sink is investigated. The heat sink contains 60 parallel microchannels each of 100 mu m width and 389 mu m depth. Twenty-five evenly distributed temperature sensors in the substrate yield local heat transfer coefficients. The pressure drop across the channels is also measured. Experiments are conducted at five flow rates through the heat sink in the range of 20-80 ml/min with the inlet subcooling held at 26 K in all the tests. At each flow rate, the uniform heat input to the substrate is increased in steps so that the fluid experiences flow regimes from single-phase liquid flow to the occurrence of critical heat flux (CHF). In the upstream region of the channels, the flow develops from single-phase liquid flow at low heat fluxes to pulsating two-phase flow at high heat fluxes during flow instability that commences at a threshold heat flux in the range of 30.5-62.3 W/cm(2) depending on the flow rate. In the downstream region, progressive flow patterns from bubbly flow, slug flow, elongated bubbles or annular flow, alternating wispy-annular and churn flow, and wall dryout at highest heat fluxes are observed. As a result, the heat transfer coefficients in the downstream region experience substantial variations over the entire heat flux range, based on which five distinct boiling regimes are identified. In contrast, the heat transfer coefficient midway along the channels remains relatively constant over the heat flux range tested. Due to changes in flow patterns during flow instability, the heat transfer is enhanced both in the downstream region (prior to extended wall dryout) and in the upstream region. A previous study by the authors found no effect of instabilities during flow boiling in a heat sink with larger microchannels (each 300 mu m wide and 389 mu m deep); it appears therefore that the effect of instabilities on heat transfer is amplified in smaller-sized channels. While CHF increases with increasing flow rate, the pressure drop across the channels has only a minimal dependence on flow rate once boiling is initiated in the microchannels, and varies almost linearly with increasing heat flux. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3179 / 3190
页数:12
相关论文
共 29 条
  • [1] Refrigerant flow boiling heat transfer in parallel microchannels as a function of local vapor quality
    Bertsch, Stefan S.
    Groll, Eckhard A.
    Garimella, Suresh V.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (19-20) : 4775 - 4787
  • [2] A composite heat transfer correlation for saturated flow boiling in small channels
    Bertsch, Stefan S.
    Groll, Eckhard A.
    Garimella, Suresh V.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (7-8) : 2110 - 2118
  • [3] Chen T., 2011, P 8 ASME JSME THERM
  • [4] Flow boiling heat transfer to a dielectric coolant in a microchannel heat sink
    Chen, Tailian
    Garimella, Suresh V.
    [J]. IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2007, 30 (01): : 24 - 31
  • [5] Effects of dissolved air on subcooled flow boiling of a dielectric coolant in a microchannel heat sink
    Chen, Tailian
    Garimella, Suresh V.
    [J]. JOURNAL OF ELECTRONIC PACKAGING, 2006, 128 (04) : 398 - 404
  • [6] Measurements and high-speed visualizations of flow boiling of a dielectric fluid in a silicon microchannel heat sink
    Chen, Tailian
    Garimella, Suresh V.
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2006, 32 (08) : 957 - 971
  • [7] Collier J., 1994, Convective Boiling and Condensation
  • [8] Cooper M.G., 1984, Advances in Heat Transfer, V16, P157, DOI DOI 10.1016/S0065-2717(08)70205-3
  • [9] Garimella S.V., 2013, ANN REV HEAT TRANSFE, V13, P1, DOI [10.1615/annualrevheattransfer.v13.30, DOI 10.1615/ANNUALREVHEATTRANSFER.V13.30, 10.1615/AnnualRevHeatTransfer.v13.30]
  • [10] Integrated single and two-phase micro heat sinks under IGBT chips
    Gillot, C
    Meysenc, L
    Schaeffer, C
    Bricard, A
    [J]. IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 1999, 22 (03): : 384 - 389