High throughput microscopy: from raw images to discoveries

被引:74
作者
Wollman, Roy [1 ]
Stuurman, Nico
机构
[1] Univ Calif Davis, Dept Mol & Cell Biol, Davis, CA 95616 USA
[2] Univ Calif San Francisco, Howard Hughes Med Inst, Dept Cellular & Mol Pharmacol, San Francisco, CA USA
关键词
high-throughput microscopy (HTM); image analysis; RNAi; genome-wide screen;
D O I
10.1242/jcs.013623
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Technological advances in automated microscopy now allow rapid acquisition of many images without human intervention, images that can be used for large-scale screens. The main challenge in such screens is the conversion of the raw images into interpretable information and hence discoveries. This post-acquisition component of image-based screens requires computational steps to identify cells, choose the cells of interest, assess their phenotype, and identify statistically significant 'hits'. Designing such an analysis pipeline requires careful consideration of the necessary hardware and software components, image analysis, statistical analysis and data presentation tools. Given the increasing availability of such hardware and software, these types of experiments have come within the reach of individual labs, heralding many interesting new ways of acquiring biological knowledge.
引用
收藏
页码:3715 / 3722
页数:8
相关论文
共 38 条
  • [31] Image-based screening for the identification of novel proteasome inhibitors
    Rickardson, Linda
    Wickstrom, Malin
    Larsson, Rolf
    Lovborg, Henrik
    [J]. JOURNAL OF BIOMOLECULAR SCREENING, 2007, 12 (02) : 203 - 210
  • [32] Hierarchy and adaptivity in segmenting visual scenes
    Sharon, Eitan
    Galun, Meirav
    Sharon, Dahlia
    Basri, Ronen
    Brandt, Achi
    [J]. NATURE, 2006, 442 (7104) : 810 - 813
  • [33] Statistical significance for genomewide studies
    Storey, JD
    Tibshirani, R
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (16) : 9440 - 9445
  • [34] An unbiased cell morphology-based screen for new, biologically active small molecules
    Tanaka, M
    Bateman, R
    Rauh, D
    Vaisberg, E
    Ramachandani, S
    Zhang, C
    Hansen, KC
    Burlingame, AL
    Trautman, JK
    Shokat, KM
    Adams, CL
    [J]. PLOS BIOLOGY, 2005, 3 (05): : 764 - 776
  • [35] An infrastructure for high-throughput microscopy: Instrumentation, informatics, and integration
    Vaisberg, Eugeni A.
    Lenzi, David
    Hansen, Richard L.
    Keon, Brigitte H.
    Finer, Jeffrey T.
    [J]. MEASURING BIOLOGICAL RESPONSES WITH AUTOMATED MICROSCOPY, 2006, 414 : 484 - 512
  • [36] Wählby C, 2003, LECT NOTES COMPUT SC, V2749, P408
  • [37] Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections
    Wählby, C
    Sintorn, IM
    Erlandsson, F
    Borgefors, G
    Bengtsson, E
    [J]. JOURNAL OF MICROSCOPY, 2004, 215 : 67 - 76
  • [38] Automated segmentation of Drosophila RNAi fluorescence cellular images using deformable models
    Xiong, Guanglei
    Zhou, Xiaobo
    Ji, Liang
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (11) : 2415 - 2424