On the structure of (111) twist grain boundaries in diamond: atomistic simulations with Tersoff-type interatomic potentials

被引:16
作者
Baruffi, C. [1 ,2 ]
Brandl, C. [3 ]
机构
[1] Ecole Polytech Fed Lausanne, Route Cantonale, CH-1015 Lausanne, Switzerland
[2] Karlsruhe Inst Technol, Inst Appl Mat, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Univ Melbourne, Dept Mech Engn, Parkville, Vic 3010, Australia
关键词
Grain boundary; Diamond-cubic lattice; Semiconductors; Tersoff-type potential; CHEMICAL-VAPOR-DEPOSITION; STACKING-FAULT ENERGY; SCREW DISLOCATION; TIGHT-BINDING; THIN-FILMS; TILT; SILICON; CARBON; SEGREGATION; ALUMINUM;
D O I
10.1016/j.actamat.2021.117055
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In nanocrystalline diamond thin films, the high grain boundary density and the associated grain boundary properties may dominate the overall material behavior. In the present work, we systematically investigate (111) twist grain boundaries in diamond carbon by using atomistic simulations with Tersoff-type potential. Our work reveals the relation between atomic scale grain boundary structure and bicrystallography, bond deformation, point defect population. A comparative study with diamond silicon highlights general trends in the grain boundary energy as a function of the misorientation. We predict a transition between glide-plane grain boundary position and shuffle-plane grain boundary with increasing misorientation in diamond cubic materials with a (111) twist grain boundary. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 67 条
[51]   On the elastic-plastic decomposition of crystal deformation at the atomic scale [J].
Stukowski, A. ;
Arsenlis, A. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2012, 20 (03)
[52]   Ultrananocrystalline and Nanocrystalline Diamond Thin Films for MEMS/NEMS Applications [J].
Sumant, Anirudha V. ;
Auciello, Orlando ;
Carpick, Robert W. ;
Srinivasan, Sudarsan ;
Butler, James E. .
MRS BULLETIN, 2010, 35 (04) :281-288
[53]  
Sutton A. P., 1995, Interfaces in Crystalline Materials
[54]  
SUTTON AP, 1983, PHILOS T R SOC A, V309, P1, DOI [10.1098/rsta.1983.0021, 10.1098/rsta.1983.0022]
[55]   Interaction of point defects with grain boundaries in fcc metals [J].
Suzuki, A ;
Mishin, Y .
INTERFACE SCIENCE, 2003, 11 (04) :425-437
[56]   EMPIRICAL INTERATOMIC POTENTIAL FOR CARBON, WITH APPLICATIONS TO AMORPHOUS-CARBON [J].
TERSOFF, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (25) :2879-2882
[57]  
Thibault J., 2006, MATER SCI TECH-LOND
[58]   Disconnection description of triple-junction motion [J].
Thomas, Spencer L. ;
Wei, Chaozhen ;
Han, Jian ;
Xiang, Yang ;
Srolovitz, David J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (18) :8756-8765
[59]   Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe [J].
Tschopp, M. A. ;
Solanki, K. N. ;
Gao, F. ;
Sun, X. ;
Khaleel, M. A. ;
Horstemeyer, M. F. .
PHYSICAL REVIEW B, 2012, 85 (06)
[60]   Order and structural units in simulations of twist grain boundaries in silicon at absolute zero [J].
von Alfthan, S. ;
Kaski, K. ;
Sutton, A. P. .
PHYSICAL REVIEW B, 2006, 74 (13)