Asymptotic formulae for partition ranks

被引:19
作者
Dousse, Jehanne [1 ]
Mertens, Michael H. [2 ]
机构
[1] Univ Paris Diderot, LIAFA, F-75025 Paris 13, France
[2] Univ Cologne, Math Inst, D-50931 Cologne, Germany
关键词
integer partitions; rank; circle method; Appell-Lerch sums; MOMENTS; CRANK;
D O I
10.4064/aa168-1-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:83 / 100
页数:18
相关论文
共 12 条
[1]   DYSONS CRANK OF A PARTITION [J].
ANDREWS, GE ;
GARVAN, FG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 18 (02) :167-171
[2]  
Atkin A. O. L., 1954, P LOND MATH SOC, V4, P84, DOI [10.1112/plms/s3-4.1.84, DOI 10.1112/PLMS/S3-4.1.84]
[3]  
BRINGMANN K, T AM MATH S IN PRESS
[4]   Taylor coefficients of mock-Jacobi forms and moments of partition statistics [J].
Bringmann, Kathrin ;
Mahlburg, Karl ;
Rhoades, Robert C. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2014, 157 (02) :231-251
[5]  
Bringmann K, 2014, T AM MATH SOC, V366, P1073
[6]  
Dyson F. J., 1944, EUREKA CAMBRIDGE, V8, P10
[7]   NEW COMBINATORIAL INTERPRETATIONS OF RAMANUJAN PARTITION CONGRUENCES MOD-5, MOD-7 AND MOD-11 [J].
GARVAN, FG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 305 (01) :47-77
[8]  
Parry D., 2014, PREPRINT
[9]   Congruence properties of partitions. [J].
Ramanujan, S .
MATHEMATISCHE ZEITSCHRIFT, 1921, 9 :147-153
[10]  
Wright E. M., 1933, P LOND MATH SOC, V36, P117