A coarse-grained protein force field for folding and structure prediction

被引:173
作者
Maupetit, Julien
Tuffery, P.
Derreumaux, Philippe
机构
[1] Univ Paris 07, Inst Biol Phys Chim, CNRS, Lab Biochim Theor,UPR 9080, F-75005 Paris, France
[2] Univ Paris 07, INSERM, E0346, Equipe Bioinformat Genom & Mol, F-75251 Paris 05, France
关键词
protein; coarse-grained model; thermodynamics; kinetics; structure prediction folding;
D O I
10.1002/prot.21505
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have revisited the protein coarse-grained optimized potential for efficient structure prediction (OPEP). The training and validation sets consist of 13 and 16 protein targets. Because optimization depends on details of how the ensemble of decoys is sampled, trial conformations are generated by molecular and Monte Carlo simulations, or taken from publicly available databases. The OPEP parameters are varied by a genetic algorithm using a scoring function which requires that the native structure has the lowest energy, and the native-like structures have energy higher than the native structure but lower than the remote conformations. Overall, we find that OPEP correctly identifies 24 native or native-like state, for 29 targets and has very similar capability to the all-atom discrete optimized protein energy model (DOPE), found recently to outperform five currently used energy models.
引用
收藏
页码:394 / 408
页数:15
相关论文
共 89 条
[1]   Vibrational dynamics of transfer RNAs: Comparison of the free and synthetase-bound forms [J].
Bahar, I ;
Jernigan, RL .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 281 (05) :871-884
[2]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]  
Betancourt MR, 1999, PROTEIN SCI, V8, P361
[5]   Insertion and assembly of membrane proteins via simulation [J].
Bond, PJ ;
Sansom, MSP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (08) :2697-2704
[6]   E-MSD: the European Bioinformatics Institute Macromolecular Structure Database [J].
Boutselakis, H ;
Dimitropoulos, D ;
Fillon, J ;
Golovin, A ;
Henrick, K ;
Hussain, A ;
Ionides, J ;
John, M ;
Keller, PA ;
Krissinel, E ;
McNeil, P ;
Naim, A ;
Newman, R ;
Oldfield, T ;
Pineda, J ;
Rachedi, A ;
Copeland, J ;
Sitnov, A ;
Sobhany, S ;
Suarez-Uruena, A ;
Swaminathan, J ;
Tagari, M ;
Tate, J ;
Tromm, S ;
Velankar, S ;
Vranken, W .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :458-462
[7]   Development of novel statistical potentials for protein fold recognition [J].
Buchete, NV ;
Straub, JE ;
Thirumalai, D .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (02) :225-232
[8]   Network and graph analyses of folding free energy surfaces [J].
Caflisch, A .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2006, 16 (01) :71-78
[9]   A graph-theory algorithm for rapid protein side-chain prediction [J].
Canutescu, AA ;
Shelenkov, AA ;
Dunbrack, RL .
PROTEIN SCIENCE, 2003, 12 (09) :2001-2014
[10]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688