Self-adjusted convex approximation method for structural optimization

被引:2
作者
Chung, TT [1 ]
Chiou, CH [1 ]
机构
[1] Natl Taiwan Univ, Dept Mech Engn, Taipei 10617, Taiwan
关键词
convex approximation; structural optimization; approximation method;
D O I
10.1016/S0045-7949(00)00162-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study presents an approximation method called self-adjusted convex approximation for optimum design of structures. The proposed method is a generalization of the convex approximation method. The order of the approximation for each constraint is automatically adjusted in the optimization process. This self-adjusted capability makes the approximate constraint values conservative enough to maintain the optimum point of the approximate problem in the feasible legion. This feature can prevent oscillation of the optimum design point and increase the convergence rate of the redesign process. Results obtained from three examples demonstrate the effectiveness of the proposed method. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:665 / 672
页数:8
相关论文
共 11 条
[1]   2 POINT EXPONENTIAL APPROXIMATION METHOD FOR STRUCTURAL OPTIMIZATION [J].
FADEL, GM ;
RILEY, MF ;
BARTHELEMY, JM .
STRUCTURAL OPTIMIZATION, 1990, 2 (02) :117-124
[2]   STRUCTURAL OPTIMIZATION - A NEW DUAL METHOD USING MIXED VARIABLES [J].
FLEURY, C ;
BRAIBANT, V .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (03) :409-428
[3]  
Haftka R. T., 1992, ELEMENTS STRUCTURAL, P237
[4]  
KIRSCH U, 1993, STRUCTURAL OPTIMIZAT, P32
[5]  
Noor A. K., 1975, Computers and Structures, V5, P9, DOI 10.1016/0045-7949(75)90015-2
[6]   SOME APPROXIMATION CONCEPTS FOR STRUCTURAL SYNTHESIS [J].
SCHMIT, LA ;
FARSHI, B .
AIAA JOURNAL, 1974, 12 (05) :692-699
[7]   ACCURACY OF TAYLOR APPROXIMATION FOR STRUCTURE RESIZING [J].
STORAASLI, OO ;
SOBIESZCZANSKI, J .
AIAA JOURNAL, 1974, 12 (02) :231-233
[8]  
Wang LP, 1996, INT J NUMER METH ENG, V39, P787, DOI 10.1002/(SICI)1097-0207(19960315)39:5<787::AID-NME881>3.0.CO
[9]  
2-5
[10]   IMPROVED 2-POINT FUNCTION APPROXIMATIONS FOR DESIGN OPTIMIZATION [J].
WANG, LP ;
GRANDHI, RV .
AIAA JOURNAL, 1995, 33 (09) :1720-1727