Durrmeyer Modification of Lupas Type Baskakov Operators Based on IPED

被引:3
作者
Dhamija, Minakshi [1 ]
机构
[1] Shaheed Rajguru Coll Appl Sci Women, Dept Math, Delhi 110096, India
来源
MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018 | 2020年 / 306卷
关键词
Stancu operators; Baskakov operators; Durrmeyer operators; Inverse Polya-Eggenberger distribution;
D O I
10.1007/978-981-15-1153-0_10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to consider Durrmeyer variant of Lupas type Baskakov operators having inverse Polya-Eggenberger distribution basis function. We derive some direct results which include uniform convergence, pointwise approximation via modulus of continuity and asymptotic formula.
引用
收藏
页码:111 / 119
页数:9
相关论文
共 18 条
[1]   Some approximation properties of a Durrmeyer variant of q-Bernstein-Schurer operators [J].
Acu, Ana-Maria ;
Muraru, Carmen Violeta ;
Sofonea, Daniel Florin ;
Radu, Voichita Adriana .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) :5636-5650
[2]  
Altomare F., 1994, APPENDIX MICHAEL PAN, VVolume 17
[3]  
BASKAKOV VA, 1957, DOKL AKAD NAUK SSSR+, V113, P249
[4]  
Bernstein S., 1912, Comm. Kharkov Math. Soc., V13
[5]   Polynomial Approximation of Anisotropic Analytic Functions of Several Variables [J].
Bonito, Andrea ;
DeVore, Ronald ;
Guignard, Diane ;
Jantsch, Peter ;
Petrova, Guergana .
CONSTRUCTIVE APPROXIMATION, 2021, 53 (02) :319-348
[6]   Generalized Positive Linear Operators Based on PED and IPED [J].
Deo, Naokant ;
Dhamija, Minakshi .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A2) :507-513
[7]   Stancu-Kantorovich operators based on inverse Polya-Eggenberger distribution [J].
Deo, Naokant ;
Dhamija, Minakshi ;
Miclaus, Dan .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 :281-289
[8]  
Dhamija M., COMMUNICATION COMMUNICATION
[9]   Jain-Durrmeyer operators associated with the inverse Polya-Eggenberger distribution [J].
Dhamija, Minakshi ;
Deo, Naokant .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 286 :15-22
[10]   Concerning the static phase to phase procedures. [J].
Eggenberger, F ;
Polya, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1923, 3 :279-289