Rearrangement Invariant Optimal Domain for Monotone Kernel Operators

被引:0
作者
Delgado, Olvido [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, E-46071 Valencia, Spain
来源
VECTOR MEASURES, INTEGRATION AND RELATED TOPICS | 2010年 / 201卷
关键词
Optimal domain; kernel operator; rearrangement invariant space; vector measure; CONVOLUTION-OPERATORS; INEQUALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a kernel operator T with values in a Banach function space X, we give monotonicity conditions on the kernel which allow us to describe the rearrangement invariant optimal domain for T (still with values in X). We also study the relation between this optimal domain and the space of integrable functions with respect to the X-valued measure canonically associated to T.
引用
收藏
页码:149 / 158
页数:10
相关论文
共 50 条
  • [21] Function spaces arising from kernel operators
    Guillermo P. Curbera
    Werner J. Ricker
    Positivity, 2010, 14 : 637 - 653
  • [22] Optimality of function spaces for kernel integral operators
    Takac, Jakub
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (09) : 4429 - 4453
  • [23] Invariant projections and convolution operators
    Delaporte, J
    Derighetti, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (05) : 1427 - 1435
  • [24] Embedding property on rearrangement invariant spaces
    LI Hong-liang Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities, 2012, (03) : 371 - 378
  • [25] Embedding property on rearrangement invariant spaces
    Li Hong-liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (03) : 371 - 378
  • [26] Factorization property in rearrangement invariant spaces
    Navoyan K.V.
    Advances in Operator Theory, 2023, 8 (4)
  • [27] Embedding property on rearrangement invariant spaces
    Hong-liang Li
    Applied Mathematics-A Journal of Chinese Universities, 2012, 27 : 371 - 378
  • [28] REARRANGEMENT INVARIANT SPACES WITH KATO PROPERTY
    Hernandez, Francisco L.
    Semenov, Evgueni M.
    Tradacete, Pedro
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 50 (02) : 215 - 232
  • [29] Complex Interpolation of Operators and Optimal Domains
    Ricardo del Campo
    Antonio Fernández
    Orlando Galdames
    Fernando Mayoral
    Francisco Naranjo
    Integral Equations and Operator Theory, 2014, 80 : 229 - 238
  • [30] Complex Interpolation of Operators and Optimal Domains
    del Campo, Ricardo
    Fernandez, Antonio
    Galdames, Orlando
    Mayoral, Fernando
    Naranjo, Francisco
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (02) : 229 - 238