Engineering Wired Life: Synthetic Biology for Electroactive Bacteria

被引:62
作者
Bird, Lina J. [1 ]
Kundu, Biki B. [2 ]
Tschirhart, Tanya [1 ]
Corts, Anna D. [3 ]
Su, Lin [4 ,5 ]
Gralnick, Jeffrey A. [6 ]
Ajo-Franklin, Caroline M. [7 ]
Glaven, Sarah M. [1 ]
机构
[1] Naval Res Lab, Ctr Biomol Sci & Engn, Washington, DC 20375 USA
[2] Rice Univ, PhD Program Syst Synthet & Phys Biol, Houston, TX 77005 USA
[3] Joyn Bio, Boston, MA 02210 USA
[4] Southeast Univ, State Key Lab Bioelect, Nanjing 210018, Peoples R China
[5] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[6] Univ Minnesota, Inst Biotechnol, Dept Plant & Microbial Biol, St Paul, MN 55108 USA
[7] Rice Univ, Dept Biosci, Houston, TX 77005 USA
关键词
extracellular electron transfer; synthetic biology; microbial electrochemical technologies; microbial bioelectronics; SHEWANELLA-ONEIDENSIS MR-1; GRAM-POSITIVE BACTERIA; C-TYPE CYTOCHROME; ESCHERICHIA-COLI; OUTER-MEMBRANE; MICROBIAL ELECTROSYNTHESIS; RESPIRATORY FLEXIBILITY; GENE-EXPRESSION; GEOBACTER; REDOX;
D O I
10.1021/acssynbio.1c00335
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Electroactive bacteria produce or consume electrical current by moving electrons to and from extracellular acceptors and donors. This specialized process, known as extracellular electron transfer, relies on pathways composed of redox active proteins and biomolecules and has enabled technologies ranging from harvesting energy on the sea floor, to chemical sensing, to carbon capture. Harnessing and controlling extracellular electron transfer pathways using bioengineering and synthetic biology promises to heighten the limits of established technologies and open doors to new possibilities. In this review, we provide an overview of recent advancements in genetic tools for manipulating native electroactive bacteria to control extracellular electron transfer. After reviewing electron transfer pathways in natively electroactive organisms, we examine lessons learned from the introduction of extracellular electron transfer pathways into Escherichia coli. We conclude by presenting challenges to future efforts and give examples of opportunities to bioengineer microbes for electrochemical applications.
引用
收藏
页码:2808 / 2823
页数:16
相关论文
共 194 条
[1]   Colorimetric and Electrochemical Bacteria Detection Using Printed Paper- and Transparency-Based Analytic Devices [J].
Adkins, Jaclyn A. ;
Boehle, Katherine ;
Friend, Colin ;
Chamberlain, Briana ;
Bisha, Bledar ;
Henry, Charles S. .
ANALYTICAL CHEMISTRY, 2017, 89 (06) :3613-3621
[2]   Crossing Over: Nanostructures that Move Electrons and Ions across Cellular Membranes [J].
Ajo-Franklin, Caroline M. ;
Noy, Aleksandr .
ADVANCED MATERIALS, 2015, 27 (38) :5797-5804
[3]   Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1 [J].
Alves, Monica N. ;
Neto, Sonia E. ;
Alves, Alexandra S. ;
Fonseca, Bruno M. ;
Carrelo, Afonso ;
Pacheco, Isabel ;
Paquete, Catarina M. ;
Soares, Claudio M. ;
Louro, Ricardo O. .
FRONTIERS IN MICROBIOLOGY, 2015, 6
[4]   The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42 [J].
Aparicio, Tomas ;
Jensen, Sheila I. ;
Nielsen, Alex T. ;
de Lorenzo, Victor ;
Martinez-Garcia, Esteban .
BIOTECHNOLOGY JOURNAL, 2016, 11 (10) :1309-1319
[5]  
Baruch M., 2020, PRECISE ELECT CONTRO, DOI [10.1101/2020.04.01.020511, DOI 10.1101/2020.04.01.020511]
[6]   Copper-bottomed: electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity [J].
Beuth, Laura ;
Pfeiffer, Catharina Philine ;
Schroeder, Uwe .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (09) :3102-3109
[7]   A redox-based electrogenetic CRISPR system to connect with and control biological information networks [J].
Bhokisham, Narendranath ;
VanArsdale, Eric ;
Stephens, Kristina T. ;
Hauk, Pricila ;
Payne, Gregory F. ;
Bentley, William E. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Engineered living conductive biofilms as functional materials [J].
Bird, Lina J. ;
Onderko, Elizabeth L. ;
Phillips, Daniel A. ;
Mickol, Rebecca L. ;
Malanoski, Anthony P. ;
Yates, Matthew D. ;
Eddie, Brian J. ;
Glaven, Sarah M. .
MRS COMMUNICATIONS, 2019, 9 (02) :505-517
[9]   Long-distance electron transport in individual, living cable bacteria [J].
Bjerg, Jesper T. ;
Boschker, Henricus T. S. ;
Larsen, Steffen ;
Berry, David ;
Schmid, Markus ;
Millo, Diego ;
Tataru, Paula ;
Meysman, Filip J. R. ;
Wagner, Michael ;
Nielsen, Lars Peter ;
Schramm, Andreas .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (22) :5786-5791
[10]   Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria [J].
Brophy, Jennifer A. N. ;
Triassi, Alexander J. ;
Adams, Bryn L. ;
Renberg, Rebecca L. ;
Stratis-Cullum, Dimitra N. ;
Grossman, Alan D. ;
Voigt, Christopher A. .
NATURE MICROBIOLOGY, 2018, 3 (09) :1043-1053