New explicit solitons for the general modified fractional Degasperis-Procesi-Camassa-Holm equation with a truncated M-fractional derivative

被引:3
作者
Hong, Xiao [1 ]
Davodi, A. G. [2 ]
Mirhosseini-Alizamini, S. M. [3 ]
Khater, M. M. A. [4 ]
Inc, Mustafa [5 ,6 ]
机构
[1] Inner Mongolia Agr Univ, Vocat & Tech Coll, Baotou 014109, Peoples R China
[2] Babol Noshirvani Univ Technol, Dept Mech Engn, POB 484, Babol, Iran
[3] Payame Noor Univ PNU, Dept Math, POB 19395-3697, Tehran, Iran
[4] Jiangsu Univ, Dept Math, Fac Sci, Zhenjiang, Jiangsu, Peoples R China
[5] Biruni Univ, Dept Comp Engn, 34010 Zeytinburnu, Istanbul, Turkey
[6] China Med Univ Hosp, China Med Univ, Dept Med Res, Taichung, Taiwan
来源
MODERN PHYSICS LETTERS B | 2021年 / 35卷 / 33期
关键词
The general modified fractional Degasperis-Procesi-Camassa-Holm equation; exp-function; rational tanh and sech methods; nonlinear equation; truncated M-fractional derivative; TRAVELING-WAVE SOLUTIONS; TANH-COTH METHOD; BOUSSINESQ; EVOLUTION;
D O I
10.1142/S0217984921504960
中图分类号
O59 [应用物理学];
学科分类号
摘要
Important analytical methods such as the methods of exp-function, rational hyperbolic method (RHM) and sec-sech method are applied in this paper to solve fractional nonlinear partial differential equations (FNLPDEs) with a truncated M-fractional derivative (TMFD), which consist of exponential terms. A general modified fractional Degasperis-Procesi-Camassa-Holm equation (GM-FDP-CHE) is investigated with TMFD. The exp-function method is also applied to derive a variety of traveling wave solutions (TWSs) with distinct physical structures for this nonlinear evolution equation. The RHM is used to obtain single-soliton solutions for this equation. The sec-sech method is used to derive multiple-soliton solutions of the GM-FDP-CHE. These techniques can be implemented to find various differential equations exact solutions arising from problems in engineering. The analytical solution of the M-fractional heat equation is found. Graphical representations are also given.
引用
收藏
页数:16
相关论文
共 46 条
[1]  
Abazari R., 1975, OPT INT J LIGHT ELEC, V126, P1970
[2]   Solitary wave solutions of coupled boussinesq equation [J].
Abazari, Reza ;
Jamshidzadeh, Shabnam ;
Biswas, Anjan .
COMPLEXITY, 2016, 21 (S2) :151-155
[3]   Generalized solitonary and periodic solutions for nonlinear partial differential equations by the Exp-function method [J].
Abdou, M. A. .
NONLINEAR DYNAMICS, 2008, 52 (1-2) :1-9
[4]   Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method [J].
Akbar, M. Ali ;
Akinyemi, Lanre ;
Yao, Shao-Wen ;
Jhangeer, Adil ;
Rezazadeh, Hadi ;
Khater, Mostafa M. A. ;
Ahmad, Hijaz ;
Inc, Mustafa .
RESULTS IN PHYSICS, 2021, 25
[5]   The bright and singular solitons of (2+1)-dimensional nonlinear Schrodinger equation with spatio-temporal dispersions [J].
Akinyemi, Lanre ;
Hosseini, Kamyar ;
Salahshour, Soheil .
OPTIK, 2021, 242
[6]   Abundant optical soliton solutions for an integrable (2+1)-dimensional nonlinear conformable Schrodinger system [J].
Akinyemi, Lanre ;
Senol, Mehmet ;
Rezazadeh, Hadi ;
Ahmad, Hijaz ;
Wang, Hao .
RESULTS IN PHYSICS, 2021, 25
[7]  
[Anonymous], 2014, Mittag-Leffler Functions, Related Topics and Applications
[8]   Soliton solutions of NLSE with quadratic-cubic nonlinearity and stability analysis [J].
Aslan, Ebru Cavlak ;
Inc, Mustafa .
WAVES IN RANDOM AND COMPLEX MEDIA, 2017, 27 (04) :594-601
[9]   Travelling wave solutions of generalized Klein-Gordon equations using Jacobi elliptic functions [J].
Ates, Esma ;
Inc, Mustafa .
NONLINEAR DYNAMICS, 2017, 88 (03) :2281-2290
[10]   New singular soliton solutions to the longitudinal wave equation in a magneto-electro-elastic circular rod with M-derivative [J].
Baskonus, H. M. ;
Gomez-Aguilar, J. F. .
MODERN PHYSICS LETTERS B, 2019, 33 (21)