Kolmogorov argument for the scaling of the energy spectrum in a stratified fluid

被引:17
作者
Bhattacharjee, Jayanta K. [1 ]
机构
[1] Harish Chandra Res Inst Jhunsi, Allahabad 211019, Uttar Pradesh, India
关键词
Turbulence in stratified fluids; Kolmogorov theory; Bolgiano-Obukhov scaling; Corrections to scaling; CONVECTION;
D O I
10.1016/j.physleta.2014.12.035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we show that the global energy balance part of the Kolmogorov argument for the kinetic energy spectrum in a homogeneous fluid repeated for the stratified fluid will inevitably exhibit a small deviation from perfect scaling. It is shown that an unambiguous scaling with an exponent of 11/5 can be observed only if the fluid is stably stratified in agreement with the original suggestion of Bolgiano. We find that even if the kinetic energy flux shows the predicted fall-off with wave-vector and the thermal energy (entropy) flux is constant, the kinetic energy spectrum will show a small deviation from perfect scaling. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:696 / 699
页数:4
相关论文
共 17 条
  • [1] TURBULENT SPECTRA IN A STABLY STRATIFIED ATMOSPHERE
    BOLGIANO, R
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1959, 64 (12): : 2226 - 2229
  • [2] Evidences of Bolgiano-Obhukhov scaling in three-dimensional Rayleigh-Benard convection
    Calzavarini, E
    Toschi, F
    Tripiccione, R
    [J]. PHYSICAL REVIEW E, 2002, 66 (01):
  • [3] On upper bounds for infinite Prandtl number convection with or without rotation
    Doering, CR
    Constantin, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (02) : 784 - 795
  • [4] Convection driven by internal heating
    Goluskin, David
    Spiegel, Edward A.
    [J]. PHYSICS LETTERS A, 2012, 377 (1-2) : 83 - 92
  • [5] THE LOCAL-STRUCTURE OF TURBULENCE IN INCOMPRESSIBLE VISCOUS-FLUID FOR VERY LARGE REYNOLDS-NUMBERS
    KOLMOGOROV, AN
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1890): : 9 - 13
  • [6] Energy spectrum of buoyancy-driven turbulence
    Kumar, Abhishek
    Chatterjee, Anando G.
    Verma, Mahendra K.
    [J]. PHYSICAL REVIEW E, 2014, 90 (02):
  • [7] Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Benard convection
    Kunnen, R. P. J.
    Clercx, H. J. H.
    Geurts, B. J.
    Van Bokhoven, L. J. A.
    Akkermans, R. A. D.
    Verzicco, R.
    [J]. PHYSICAL REVIEW E, 2008, 77 (01)
  • [8] Small-Scale Properties of Turbulent Rayleigh-Benard Convection
    Lohse, Detlef
    Xia, Ke-Qing
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 : 335 - 364
  • [9] CONSERVATION-LAWS AND 2-FLUX SPECTRA OF HYDRODYNAMIC CONVECTIVE TURBULENCE
    LVOV, VS
    FALKOVICH, GE
    [J]. PHYSICA D, 1992, 57 (1-2): : 85 - 95
  • [10] SPECTRA OF VELOCITY AND TEMPERATURE-FLUCTUATIONS WITH CONSTANT ENTROPY FLUX OF FULLY-DEVELOPED FREE-CONVECTIVE TURBULENCE
    LVOV, VS
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (06) : 687 - 690