Existence and regularity results for nonlinear and nonhomogeneous elliptic equation

被引:3
作者
Benali, Aharrouch [1 ]
Jaouad, Bennouna [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Lab LAMA, Fes, Morocco
关键词
Sobolev spaces with variable exponent; Nonhomogeneous elliptic equation; Rearrangement methods; RENORMALIZED SOLUTIONS;
D O I
10.1007/s41808-021-00121-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence and regularity of solutions for the nonlinear elliptic problem {-div a(x, u, del u) = f in Omega, u = 0 on partial derivative Omega, where Omega is a bounded open set in R-N, (N >= 2), a a Caratheodory function, and f in L-m(.)(Omega).
引用
收藏
页码:961 / 975
页数:15
相关论文
共 17 条
[1]   Existence of weak and renormalized solutions of degenerated elliptic equation [J].
Aharrouch, Benali ;
Bennouna, Jaouad ;
El Hamdaoui, Bouchra .
AFRIKA MATEMATIKA, 2019, 30 (5-6) :755-776
[2]   EXISTENCE OF SOLUTIONS FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS IN P(X)-SOBOLEV SPACES [J].
Aharrouch, Benali ;
Boukhrij, Mohamed ;
Bennouna, Jaouad .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 51 (02) :389-411
[3]  
Alvino A., 2003, Ann. Mat. Pura Appl., V182, P53
[4]  
[Anonymous], 1980, Monographs and Studies in Mathematics
[5]   Renormalized solutions for nonlinear elliptic equations with variable exponents and L1 data [J].
Bendahmane, Mostafa ;
Wittbold, Petra .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (02) :567-583
[6]  
Benilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
[7]   ALMOST EVERYWHERE CONVERGENCE OF THE GRADIENTS OF SOLUTIONS TO ELLIPTIC AND PARABOLIC EQUATIONS [J].
BOCCARDO, L ;
MURAT, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) :581-597
[8]  
BOCCARDO L, 1992, COMMUN PART DIFF EQ, V17, P641
[9]   NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA [J].
BOCCARDO, L ;
GALLOUET, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) :149-169
[10]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+