Event-Triggered Adaptive Optimal Control With Output Feedback: An Adaptive Dynamic Programming Approach

被引:45
作者
Zhao, Fuyu [1 ]
Gao, Weinan [2 ]
Jiang, Zhong-Ping [3 ]
Liu, Tengfei [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[2] Florida Inst Technol, Coll Engn & Sci, Dept Mech & Civil Engn, Melbourne, FL 32901 USA
[3] NYU, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Optimal control; Adaptive systems; Dynamic programming; Linear systems; Mathematical model; Symmetric matrices; Learning systems; Adaptive dynamic programming (ADP); event-triggered control; output feedback; ZERO-SUM GAMES; NONLINEAR-SYSTEMS; GAIN; DESIGN; STATE;
D O I
10.1109/TNNLS.2020.3027301
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents an event-triggered output-feedback adaptive optimal control method for continuous-time linear systems. First, it is shown that the unmeasurable states can be reconstructed by using the measured input and output data. An event-based feedback strategy is then proposed to reduce the number of controller updates and save communication resources. The discrete-time algebraic Riccati equation is iteratively solved through event-triggered adaptive dynamic programming based on both policy iteration (PI) and value iteration (VI) methods. The convergence of the proposed algorithm and the closed-loop stability is carried out by using the Lyapunov techniques. Two numerical examples are employed to verify the effectiveness of the design methodology.
引用
收藏
页码:5208 / 5221
页数:14
相关论文
共 60 条
[1]   Data-based optimal control [J].
Aangenent, W ;
Kostic, D ;
de Jager, B ;
van de Molengraft, R ;
Steinbuch, M .
ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, :1460-1465
[2]  
Agarwal R. P., 2000, Difference equations and inequalities: Theory, methods and applications, V2nd, DOI DOI 10.1201/9781420027020
[3]   Model-free Q-learning designs for linear discrete-time zero-sum games with application to H-infinity control [J].
Al-Tamimi, Asma ;
Lewis, Frank L. ;
Abu-Khalaf, Murad .
AUTOMATICA, 2007, 43 (03) :473-481
[4]  
Arzen K.-E., 1999, Proceedings of the 14th World Congress. International Federation of Automatic Control, P423
[5]  
Astrom K.J., 2008, Analysis and design of nonlinear control systems: In honor of Alberto Isidori, P127, DOI DOI 10.1007/978-3-540-74358-3_9
[6]  
Åström KJ, 2002, IEEE DECIS CONTR P, P2011, DOI 10.1109/CDC.2002.1184824
[7]   CONTINUOUS-TIME ROBUST DYNAMIC PROGRAMMING [J].
Bian, Tao ;
Jiang, Zhong-Ping .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (06) :4150-4174
[8]   Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design [J].
Bian, Tao ;
Jiang, Zhong-Ping .
AUTOMATICA, 2016, 71 :348-360
[9]   Adaptive dynamic programming and optimal control of nonlinear nonaffine systems [J].
Bian, Tao ;
Jiang, Yu ;
Jiang, Zhong-Ping .
AUTOMATICA, 2014, 50 (10) :2624-2632
[10]  
Chen T., 1995, Optimal Sampled-Data Control Systems, DOI 10.1007/978-1-4471-3037-6