Aspen Plus model of an alkaline electrolysis system for hydrogen production

被引:169
|
作者
Sanchez, Monica [1 ,2 ]
Amores, Ernesto [1 ]
Abad, David [1 ]
Rodriguez, Lourdes [3 ]
Clemente-Jul, Carmen [2 ]
机构
[1] Ctr Nacl Hidrogeno CNH2, Prolongacion Fernando El Santo S-N, Ciudad Real 13500, Spain
[2] UPM, Dept Energia & Combustibles, ETSI Minas & Energia, C Rios Rosas 21, Madrid 28003, Spain
[3] UEM, C Tajo S-N, Madrid 28670, Spain
关键词
Hydrogen production; Alkaline water electrolysis; Balance of plant; System simulation; Aspen plus model; Process optimization; WATER ELECTROLYSIS; ENERGY; POWER; PERFORMANCE; SIMULATION; OPERATION; STORAGE; CELL; GAS;
D O I
10.1016/j.ijhydene.2019.12.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A model of an alkaline electrolysis plant is proposed in this paper, including both stack and balance of plant, with the objective of analyzing the performance of a complete electrolysis system. For this purpose, Aspen Plus has been used in this work due to its great potential and flexibility. Since this software does not include codes for modelling the electrolysis cells, a custom model for the stack has been integrated as a subroutine, using a tool called Aspen Custom Modeler. This stack model is based on semi-empirical equations which describe the voltage cell, Faraday efficiency and gas purity as a function of the current. The rest of the components in the electrolysis plant have been modelled with standard operation units included in Aspen Plus. Simulations have been carried out in order to evaluate and optimize the balance of the plant of an alkaline electrolysis system for hydrogen production. Also, a parametric study has been conducted. The results show that increasing the operation temperature and reducing the pressure can improve the overall performance of the system. The proposed model in this work for the alkaline electrolyzer can be used in the future to develop a useful tool to carry out techno-economic studies of alkaline electrolysis systems integrated with other process. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3916 / 3929
页数:14
相关论文
共 50 条
  • [1] Development of an Aspen Plus® Model for the Process of Hydrogen Production by Black Liquor Electrolysis
    Goncalves, Jose R. M.
    Cecilio, Duarte M.
    Oliveira, Raisa C. P.
    Mateus, Maria M.
    Santos, Diogo M. F.
    SYMMETRY-BASEL, 2022, 14 (08):
  • [2] HYDROGEN PRODUCTION BY ALKALINE WATER ELECTROLYSIS
    Santos, Diogo M. F.
    Sequeira, Cesar A. C.
    Figueiredo, Jose L.
    QUIMICA NOVA, 2013, 36 (08): : 1176 - 1193
  • [3] Optimum pulse electrolysis for efficiency enhancement of hydrogen production by alkaline water electrolyzers
    Cheng, Haoran
    Xia, Yanghong
    Hu, Zhiyuan
    Wei, Wei
    APPLIED ENERGY, 2024, 358
  • [4] Thermodynamic modeling and assessment of a combined coal gasification and alkaline water electrolysis system for hydrogen production
    Herdem, Munur Sacit
    Farhad, Siamak
    Dincer, Ibrahim
    Hamdullahpur, Feridun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (07) : 3061 - 3071
  • [5] Eulerian Two-Fluid Model of Alkaline Water Electrolysis for Hydrogen Production
    Le Bideau, Damien
    Mandin, Philippe
    Benbouzid, Mohamed
    Kim, Myeongsub
    Sellier, Mathieu
    Ganci, Fabrizio
    Inguanta, Rosalinda
    ENERGIES, 2020, 13 (13)
  • [6] A comprehensive review of recent advances in alkaline water electrolysis for hydrogen production
    Sebbahi, Seddiq
    Assila, Abdelmajid
    Belghiti, Amine Alaoui
    Laasri, Said
    Kaya, Savas
    Hlil, El Kebir
    Rachidi, Samir
    Hajjaji, Abdelowahed
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 82 : 583 - 599
  • [7] Thermal characterization of an alkaline electrolysis cell for hydrogen production at atmospheric pressure
    Barco-Burgos, J.
    Eicker, U.
    Saldana-Robles, N.
    Saldana-Robles, A. L.
    Alcantar-Camarena, V
    FUEL, 2020, 276
  • [8] Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: Conceptual design and analysis
    Bhattacharyya, Rupsha
    Misra, Apurva
    Sandeep, K. C.
    ENERGY CONVERSION AND MANAGEMENT, 2017, 133 : 1 - 13
  • [9] An overview of water electrolysis technologies for green hydrogen production
    Kumar, S. Shiva
    Lim, Hankwon
    ENERGY REPORTS, 2022, 8 : 13793 - 13813
  • [10] Solar hydrogen production via alkaline water electrolysis
    Kovac, Ankica
    Marcius, Doria
    Budin, Luka
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (20) : 9841 - 9848