Imaging Enhancement via CNN in MIMO Virtual Array-Based Radar

被引:27
作者
Dai, Yongpeng [1 ]
Jin, Tian [1 ]
Li, Haoran [1 ]
Song, Yongkun [1 ]
Hu, Jun [2 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci, Changsha 410073, Peoples R China
[2] Sun Yat Sen Univ, Sch Elect & Commun Engn, Guangzhou 51006, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 09期
基金
中国国家自然科学基金;
关键词
Training; Radar remote sensing; Neural networks; Imaging; Radar; Radar imaging; Radar antennas; Convolutional neural network (CNN); grating lobe suppression; radar image enhancement; sidelobe suppression; COHERENCE FACTOR; INTERFEROMETRY; RECONSTRUCTION; PURSUIT;
D O I
10.1109/TGRS.2020.3035064
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Limited by the total length, the total number of the antenna units as well as their topology, the radar images always suffered from the sidelobe/grating lobe which severely impacts the quality of the radar images. In this article, a convolutional neural network (CNN)-based radar image-enhancing method is proposed. Using the original radar images as the input samples and using their corresponding ideal radar images with no sidelobe/grating lobe as the label to train the CNN. A well-trained CNN can suppress the sidelobe/grating lobe in the radar images. The structure of the specific CNN, the generation methods of the samples and the labels, the training procedure of the CNN, as well as some other detailed implementation strategies are specifically illustrated in this article. The proposed method is utilized to suppress the sidelobe/grating lobe in both the simulated and real recorded radar images. Compared to other existing methods, the proposed method is with better sidelobe/grating lobe suppressing performance and better robustness.
引用
收藏
页码:7449 / 7458
页数:10
相关论文
共 33 条
[1]  
Alshammary A, 2017, PROC EUR CONF ANTENN, P1158, DOI 10.23919/EuCAP.2017.7928867
[2]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[3]  
Bechtel M. E, 2012, ATMOSPHERIC EFFECTS, P3
[4]  
Biying L., 2015, IET INT RAD C HANGZH, P1, DOI DOI 10.1049/CP.2015.1326
[5]   Coherence Factor Enhancement of Through-Wall Radar Images [J].
Burkholder, Robert J. ;
Browne, Kenneth E. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2010, 9 :842-845
[6]  
Dai YP, 2018, PR ELECTROMAGN RES S, P366, DOI 10.23919/PIERS.2018.8597817
[7]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[8]   A Portable 3-D Imaging FMCW MIMO Radar Demonstrator With a 24 x 24 Antenna Array for Medium-Range Applications [J].
Ganis, Alexander ;
Navarro, Enric Miralles ;
Schoenlinner, Bernhard ;
Prechtel, Ulrich ;
Meusling, Askold ;
Heller, Christoph ;
Spreng, Thomas ;
Mietzner, Jan ;
Krimmer, Christian ;
Haeberle, Babette ;
Lutz, Steffen ;
Loghi, Mirko ;
Belenguer, Angel ;
Esteban, Hector ;
Ziegler, Volker .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01) :298-312
[9]   Enhanced Radar Imaging Using a Complex-Valued Convolutional Neural Network [J].
Gao, Jingkun ;
Deng, Bin ;
Qin, Yuliang ;
Wang, Hongqiang ;
Li, Xiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (01) :35-39
[10]   A Novel Method for 3-D Millimeter-Wave Holographic Reconstruction Based on Frequency Interferometry Techniques [J].
Gao, Jingkun ;
Qin, Yuliang ;
Deng, Bin ;
Wang, Hongqiang ;
Li, Xiang .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (03) :1579-1596