Random matrices, Virasoro algebras, and noncommutative KP

被引:31
作者
Adler, M [1 ]
Shiota, T
Van Moerbeke, P
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02254 USA
[2] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[3] Catholic Univ Louvain, Inst Math Pure & Appliquee, B-1348 Louvain, Belgium
[4] Brandeis Univ, Dept Math, Waltham, MA 02154 USA
关键词
D O I
10.1215/S0012-7094-98-09417-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:379 / 431
页数:53
相关论文
共 39 条
[1]   RANDOM MATRICES, VERTEX OPERATORS AND THE VIRASORO-ALGEBRA [J].
ADLER, M ;
SHIOTA, T ;
VANMOERBEKE, P .
PHYSICS LETTERS A, 1995, 208 (1-2) :67-78
[2]   Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials [J].
Adler, M ;
VanMoerbeke, P .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (03) :863-911
[3]  
Adler M, 1997, COMMUN PUR APPL MATH, V50, P241, DOI 10.1002/(SICI)1097-0312(199703)50:3<241::AID-CPA3>3.0.CO
[4]  
2-B
[5]   A matrix integral solution to [P,Q]=P and matrix Laplace transforms [J].
Adler, M ;
Morozov, A ;
Shiota, T ;
vanMoerbeke, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (01) :233-263
[6]   A MATRIX INTEGRAL SOLUTION TO 2-DIMENSIONAL W(P)-GRAVITY [J].
ADLER, M ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :25-56
[7]   FROM THE OMEGA-INFINITY-ALGEBRA TO ITS CENTRAL EXTENSION - A TAU-FUNCTION APPROACH [J].
ADLER, M ;
SHIOTA, T ;
VANMOERBEKE, P .
PHYSICS LETTERS A, 1994, 194 (1-2) :33-43
[8]   A LAX REPRESENTATION FOR THE VERTEX OPERATOR AND THE CENTRAL EXTENSION [J].
ADLER, M ;
SHIOTA, T ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (03) :547-588
[9]  
ADLER M, IN PRESS FINITE RAND
[10]  
ADLER M, 1999, IN PRESS ANN MATH