Self-similar large time behavior of solutions to Korteweg-de Vries-Burgers equation

被引:40
作者
Karch, G [1 ]
机构
[1] Univ Wroclaw, Inst Matemat, PL-50384 Wroclaw, Poland
关键词
large time behavior of solutions; dispersive equations; Korteweg de Vries equation; Burgers equation; source-type solution;
D O I
10.1016/S0362-546X(97)00708-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:199 / 219
页数:21
相关论文
共 28 条
[1]   SUFFICIENT CONDITIONS FOR STABILITY OF SOLITARY-WAVE SOLUTIONS OF MODEL-EQUATIONS FOR LONG WAVES [J].
ALBERT, JP ;
BONA, JL ;
HENRY, DB .
PHYSICA D, 1987, 24 (1-3) :343-366
[2]  
AMICK CJ, 1989, J DIFFER EQUATIONS, V8, P11
[3]  
BILER P, 1984, B POLISH ACAD SCI MA, V32, P275
[4]   DECAY-RATES OF THE SOLUTIONS OF NONLINEAR DISPERSIVE EQUATIONS [J].
BISOGNIN, V ;
MENZALA, GP .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :1231-1246
[5]  
Bona J., 1980, P INT C MATH HELS 19, P887
[6]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[7]  
BONA JL, 1993, DIFFERENTIAL INTEGRA, V6, P961
[8]  
Bona JL., 1994, DIFFERENTIAL INTEGRA, V7, P699
[9]   ASYMPTOTIC-BEHAVIOR FOR THE VORTICITY EQUATIONS IN DIMENSIONS 2 AND 3 [J].
CARPIO, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (5-6) :827-872
[10]  
CHERN IL, 1987, COMMUN MATH PHYS, V110, P1103