Cogeneration of hydrogen and methane from Arthrospira maxima biomass with bacteria domestication and enzymatic hydrolysis

被引:44
作者
Cheng, Jun [1 ]
Zhang, Minghui [1 ]
Song, Wenlu [1 ]
Xia, Ao [1 ]
Zhou, Junhu [1 ]
Cen, Kefa [1 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
关键词
Arthrospira maxima; Hydrogen; Methane; Fermentation; Bacteria domestication; Enzymolysis; DIVERSITY; CYANOBACTERIUM; FERMENTATION;
D O I
10.1016/j.ijhydene.2010.11.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The energy conversion efficiency in hydrogen and methane cogeneration from Arthrospira maxima biomass by two-phase fermentation is improved with bacteria domestication and enzymatic hydrolysis. The A. maxima biomass (dried weight) can theoretically cogenerate hydrogen and methane yields of 318 ml/g and 262 ml/g, which dramatically increases the theoretical energy conversion efficiency from 16.6% in hydrogen only production to 61.9%. The experimental hydrogen yield is increased from 49.7 ml/g to 64.3 ml/g, when the hydrogenogens community is domesticated with A. maxima biomass as carbon source. The hydrogen yield is further increased to 78.7 mug when A. maxima biomass is hydrolyzed with glucoamylase, which gives an energy conversion efficiency of 4.1% in hydrogen only production. The soluble metabolite byproducts from the first hydrogen-producing phase are reutilized by methanogens to produce methane of 109.5-145.5 ml/g in the second phase. The cogeneration of hydrogen and methane from A. maxima biomass markedly increases the experimental energy conversion efficiency to 27.7%. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1474 / 1481
页数:8
相关论文
共 20 条
[1]   Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium "Arthrospira (Spirulina) maxima" [J].
Ananyev, Gennady ;
Carrieri, Damian ;
Dismukes, G. Charles .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (19) :6102-6113
[2]   Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis [J].
Aoyama, K ;
Uemura, I ;
Miyake, J ;
Asada, Y .
JOURNAL OF FERMENTATION AND BIOENGINEERING, 1997, 83 (01) :17-20
[3]   Bacillus plakortidis sp nov and Bacillus murimartini sp nov., novel alkalitolerant members of rRNA group 6 [J].
Borchert, Martin S. ;
Nielsen, Preben ;
Graeber, Ingeborg ;
Kaesler, Ines ;
Szewzyk, Ulrich ;
Pape, Thomas ;
Antranikian, Garabed ;
Schafer, Thomas .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2007, 57 :2888-2893
[4]   Renewable hydrogen production by cyanobacteria: Nickel requirements for optimal hydrogenase activity [J].
Carrieri, Damian ;
Ananyev, Gennady ;
Costas, Amaya M. Garcia ;
Bryant, Donald A. ;
Dismukes, G. Charles .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (08) :2014-2022
[5]   Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose [J].
Cavalcante de Amorim, Eduardo Lucena ;
Barros, Aruana Rocha ;
Rissato Zamariolli Damianouic, Marcia Helena ;
Silva, Edson Luiz .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) :783-790
[6]   Aquatic phototrophs: efficient alternatives to land-based crops for biofuels [J].
Dismukes, G. Charles ;
Carrieri, Damian ;
Bennette, Nicholas ;
Ananyev, Gennady M. ;
Posewitz, Matthew C. .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (03) :235-240
[7]   The genome of M-acetivorans reveals extensive metabolic and physiological diversity [J].
Galagan, JE ;
Nusbaum, C ;
Roy, A ;
Endrizzi, MG ;
Macdonald, P ;
FitzHugh, W ;
Calvo, S ;
Engels, R ;
Smirnov, S ;
Atnoor, D ;
Brown, A ;
Allen, N ;
Naylor, J ;
Stange-Thomann, N ;
DeArellano, K ;
Johnson, R ;
Linton, L ;
McEwan, P ;
McKernan, K ;
Talamas, J ;
Tirrell, A ;
Ye, WJ ;
Zimmer, A ;
Barber, RD ;
Cann, I ;
Graham, DE ;
Grahame, DA ;
Guss, AM ;
Hedderich, R ;
Ingram-Smith, C ;
Kuettner, HC ;
Krzycki, JA ;
Leigh, JA ;
Li, WX ;
Liu, JF ;
Mukhopadhyay, B ;
Reeve, JN ;
Smith, K ;
Springer, TA ;
Umayam, LA ;
White, O ;
White, RH ;
de Macario, EC ;
Ferry, JG ;
Jarrell, KF ;
Jing, H ;
Macario, AJL ;
Paulsen, I ;
Pritchett, M ;
Sowers, KR .
GENOME RESEARCH, 2002, 12 (04) :532-542
[8]   Optimum growth conditions and light utilization efficiency of Spirulina platensis (equals Arthrospira fusiformis) (Cyanophyta) from Lake Chitu, Ethiopia [J].
Kebede, E ;
Ahlgren, G .
HYDROBIOLOGIA, 1996, 332 (02) :99-109
[9]   Diversity of tetracycline resistance genes in bacteria isolated from various agricultural environments [J].
Kobashi, Yuri ;
Hasebe, Akira ;
Nishio, Michinori ;
Uchiyama, Hiroo .
MICROBES AND ENVIRONMENTS, 2007, 22 (01) :44-51
[10]   Identifying the fundamental units of bacterial diversity: A paradigm shift to incorporate ecology into bacterial systematics [J].
Koeppel, Alexander ;
Perry, Elizabeth B. ;
Sikorski, Johannes ;
Krizanc, Danny ;
Warner, Andrew ;
Ward, David M. ;
Rooney, Alejandro P. ;
Brambilla, Evelyne ;
Connor, Nora ;
Ratcliff, Rodney M. ;
Nevo, Eviatar ;
Cohan, Frederick M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (07) :2504-2509