Arithmeticity of the monodromy of some Kodaira fibrations

被引:0
作者
Salter, Nick [1 ]
Tshishiku, Bena [2 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[2] Brown Univ, Dept Math, 151 Thayer St, Providence, RI 02908 USA
关键词
surface bundles; monodromy; mapping class groups; arithmetic groups; SURFACE BUNDLES; REPRESENTATIONS;
D O I
10.1112/S0010437X19007668
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A question of Griffiths Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the 'geometric' monodromy, valued in the mapping class group of the fiber.
引用
收藏
页码:114 / 157
页数:44
相关论文
共 22 条
  • [1] [Anonymous], 1977, GRADUATE TEXTS MATH, DOI DOI 10.1007/978-1-4684-9458-7.877
  • [2] [Anonymous], 1994, PURE APPL MATH
  • [3] Arapura D, 2017, J ECOLE POLYTECH-MAT, V4, P595, DOI 10.5802/jep.52
  • [4] Atiyah M.F., 1969, GLOBAL ANAL, P73
  • [5] Ben Simon G, 2017, J DIFFER GEOM, V105, P375
  • [6] Kodaira fibrations and beyond: methods for moduli theory
    Catanese, Fabrizio
    [J]. JAPANESE JOURNAL OF MATHEMATICS, 2017, 12 (02): : 91 - 174
  • [7] The number of fiberings of a surface bundle over a surface
    Chen, Lei
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (04): : 2245 - 2263
  • [8] DELIGNE P, 1986, PUBL MATH-PARIS, P5
  • [9] Ellenberg J.S., 2014, MATH SCI RES I PUBL, V61, P51
  • [10] Farb B., 2012, PRINCETON MATH SERIE, V49