An Ancient Riboswitch Class in Bacteria Regulates Purine Biosynthesis and One-Carbon Metabolism

被引:91
作者
Kim, Peter B. [1 ]
Nelson, James W. [2 ]
Breaker, Ronald R. [1 ,3 ,4 ]
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[2] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[3] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[4] Yale Univ, Howard Hughes Med Inst, New Haven, CT 06520 USA
关键词
PYRUVATE FORMATE-LYASE; LIGAND-BINDING; RIBONUCLEOTIDE REDUCTASES; KINASE INHIBITORS; EUBACTERIA SENSE; PROTEIN-KINASE; TRANSCRIPTION; MECHANISM; GLYCINE; IDENTIFICATION;
D O I
10.1016/j.molcel.2015.01.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Over 30 years ago, ZTP (5-aminoimidazole-4-carboxamide riboside 50-triphosphate), a modified purine biosynthetic intermediate, was proposed to signal 10-formyl-tetrahydrofolate (10f-THF) deficiency in bacteria. However, the mechanisms by which this putative alarmone or its precursor ZMP (5-aminoimidazole-4-carboxamide ribonucleotide, also known as AICAR) brings about any metabolic changes remain unexplained. Herein, we report the existence of a widespread riboswitch class that is most commonly associated with genes related to de novo purine biosynthesis and one-carbon metabolism. Biochemical data confirm that members of this riboswitch class selectively bind ZMP and ZTP with nanomolar affinity while strongly rejecting numerous natural analogs. Indeed, increases in the ZMP/ZTP pool, caused by folate stress in bacterial cells, trigger changes in the expression of a reporter gene fused to representative ZTP riboswitches in vivo. The wide distribution of this riboswitch class suggests that ZMP/ZTP signaling is important for species in numerous bacterial lineages.
引用
收藏
页码:317 / 328
页数:12
相关论文
共 59 条
[1]   A Eubacterial Riboswitch Class That Senses the Coenzyme Tetrahydrofolate [J].
Ames, Tyler D. ;
Rodionov, Dmitry A. ;
Weinberg, Zasha ;
Breaker, Ronald R. .
CHEMISTRY & BIOLOGY, 2010, 17 (07) :681-685
[2]   Structure and evolution of transcriptional regulatory networks [J].
Babu, MM ;
Luscombe, NM ;
Aravind, L ;
Gerstein, M ;
Teichmann, SA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (03) :283-291
[3]   Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride [J].
Baker, Jenny L. ;
Sudarsan, Narasimhan ;
Weinberg, Zasha ;
Roth, Adam ;
Stockbridge, Randy B. ;
Breaker, Ronald R. .
SCIENCE, 2012, 335 (6065) :233-235
[4]   New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control [J].
Barrick, JE ;
Corbino, KA ;
Winkler, WC ;
Nahvi, A ;
Mandal, M ;
Collins, J ;
Lee, M ;
Roth, A ;
Sudarsan, N ;
Jona, I ;
Wickiser, JK ;
Breaker, RR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6421-6426
[5]  
Becker A, 1999, NAT STRUCT BIOL, V6, P969
[6]   ZTP (5-AMINO 4-IMIDAZOLE CARBOXAMIDE RIBOSIDE 5'-TRIPHOSPHATE) - A PROPOSED ALARMONE FOR 10-FORMYL-TETRAHYDROFOLATE DEFICIENCY [J].
BOCHNER, BR ;
AMES, BN .
CELL, 1982, 29 (03) :929-937
[7]   Alternative oxygen-dependent and oxygen-independent ribonucleotide reductases in Streptomyces:: cross-regulation and physiological role in response to oxygen limitation [J].
Borovok, I ;
Gorovitz, B ;
Yanku, M ;
Schreiber, R ;
Gust, B ;
Chater, K ;
Aharonowitz, Y ;
Cohen, G .
MOLECULAR MICROBIOLOGY, 2004, 54 (04) :1022-1035
[8]   Riboswitches and the RNA World [J].
Breaker, Ronald R. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2012, 4 (02)
[9]   Prospects for Riboswitch Discovery and Analysis [J].
Breaker, Ronald R. .
MOLECULAR CELL, 2011, 43 (06) :867-879
[10]   Riboswitches: from ancient gene-control systems to modern drug targets [J].
Breaker, Ronald R. .
FUTURE MICROBIOLOGY, 2009, 4 (07) :771-773