Few-Shot Class-Incremental Learning from an Open-Set Perspective

被引:67
作者
Peng, Can [1 ]
Zhao, Kun [2 ]
Wang, Tianren [1 ]
Li, Meng [1 ]
Lovell, Brian C. [1 ]
机构
[1] Univ Queensland, Brisbane, Qld, Australia
[2] Sullivan Nicolaides Pathol, Brisbane, Qld, Australia
来源
COMPUTER VISION, ECCV 2022, PT XXV | 2022年 / 13685卷
基金
澳大利亚研究理事会;
关键词
Few shot; One shot; Incremental learning; Classification;
D O I
10.1007/978-3-031-19806-9_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The continual appearance of new objects in the visual world poses considerable challenges for current deep learning methods in real-world deployments. The challenge of new task learning is often exacerbated by the scarcity of data for the new categories due to rarity or cost. Here we explore the important task of Few-Shot Class-Incremental Learning (FSCIL) and its extreme data scarcity condition of one-shot. An ideal FSCIL model needs to perform well on all classes, regardless of their presentation order or paucity of data. It also needs to be robust to openset real-world conditions and be easily adapted to the new tasks that always arise in the field. In this paper, we first reevaluate the current task setting and propose a more comprehensive and practical setting for the FSCIL task. Then, inspired by the similarity of the goals for FSCIL and modern face recognition systems, we propose our method-Augmented Angular Loss Incremental Classification or ALICE. In ALICE, instead of the commonly used cross-entropy loss, we propose to use the angular penalty loss to obtain well-clustered features. As the obtained features not only need to be compactly clustered but also diverse enough to maintain generalization for future incremental classes, we further discuss how class augmentation, data augmentation, and data balancing affect classification performance. Experiments on benchmark datasets, including CIFAR100, miniImageNet, and CUB200, demonstrate the improved performance of ALICE over the state-of-the-art FSCIL methods. Code is available at https://github.com/CanPeng123/FSCIL ALICE.
引用
收藏
页码:382 / 397
页数:16
相关论文
共 27 条
[1]   End-to-End Incremental Learning [J].
Castro, Francisco M. ;
Marin-Jimenez, Manuel J. ;
Guil, Nicolas ;
Schmid, Cordelia ;
Alahari, Karteek .
COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 :241-257
[2]  
Chen T, 2020, PR MACH LEARN RES, V119
[3]   Exploring Simple Siamese Representation Learning [J].
Chen, Xinlei ;
He, Kaiming .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :15745-15753
[4]   Synthesized Feature based Few-Shot Class-Incremental Learning on a Mixture of Subspaces [J].
Cheraghian, Ali ;
Rahman, Shafin ;
Ramasinghe, Sameera ;
Fang, Pengfei ;
Simon, Christian ;
Petersson, Lars ;
Harandi, Mehrtash .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :8641-8650
[5]   Semantic-aware Knowledge Distillation for Few-Shot Class-Incremental Learning [J].
Cheraghian, Ali ;
Rahman, Shafin ;
Fang, Pengfei ;
Roy, Soumava Kumar ;
Petersson, Lars ;
Harandi, Mehrtash .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2534-2543
[6]   ArcFace: Additive Angular Margin Loss for Deep Face Recognition [J].
Deng, Jiankang ;
Guo, Jia ;
Xue, Niannan ;
Zafeiriou, Stefanos .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4685-4694
[7]  
Dong SL, 2021, AAAI CONF ARTIF INTE, V35, P1255
[8]  
Goodfellow IanJ., 2015, CORR ABS14126572
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]  
Hinton G., NIPS 2014 DEEP LEARN