CONVERGENCE OF WEIGHTED AVERAGES OF MARTINGALES IN NONCOMMUTATIVE BANACH FUNCTION SPACES

被引:0
作者
Zhang Chao [1 ,2 ]
Hou Youliang [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Univ Autonoma Madrid, Dept Matemat, Fac Ciencias, E-28049 Madrid, Spain
基金
中国国家自然科学基金;
关键词
Weighted average; noncommutative martingales; noncommutative Banach function spaces; uniform integrability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let x = (xn)(n >= 1) be a martingale on a noncommutative probability space (M, T) and (w(n))(n >= 1) a sequence of positive numbers such that W-n =Sigma(n)(k=1) w(k)-> infinity as n ->infinity. We prove that x = (x(n))(n >= 1) converges in E(M) if and only if (sigma(n)(x))(n >= 1) converges in E(M), where E(M) is a noncommutative rearrangement invariant; Banach function space with the Fatou property and sigma(n)(x) is given by sigma(n)(x)=1/W-n Sigma(n)(k=1) w(k)x(k), n = 1, 2,... If in addition, E(M) has absolutely continuous norm, then, (sigma(n)(x))(n >= 1) converges in E(M) if and only if x = (x(n))(n >= 1) is uniformly integrable and its limit in measure topology x(infinity) epsilon E(M).
引用
收藏
页码:735 / 744
页数:10
相关论文
共 14 条
[1]  
Cuculescu I, 1969, REV ROUMAINE MATH PU, V14, P759
[2]  
de Pagter B, 2007, TRENDS MATH, P197
[3]   NON-COMMUTATIVE BANACH FUNCTION-SPACES [J].
DODDS, PG ;
DODDS, TKY ;
DEPAGTER, B .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (04) :583-597
[4]   FULLY SYMMETRICAL OPERATOR-SPACES [J].
DODDS, PG ;
DODDS, TK ;
DEPAGTER, B .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (06) :942-972
[5]   GENERALIZED S-NUMBERS OF TAU-MEASURABLE OPERATORS [J].
FACK, T ;
KOSAKI, H .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 123 (02) :269-300
[6]  
Kazamaki N, 1967, TOHOKU MATH J, V19, P297
[7]   Convergence of weighted averages of martingales in Banach function spaces [J].
Kikuchi, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 244 (01) :39-56
[8]  
Krein S.G., 1982, TRANSLATIONS MATH MO, V54
[9]  
LUXEMBURG WAJ, 1967, PURE APPL MATH, V10, P83
[10]   PROBABILISTIC ASPECTS OF VON NEUMANN ALGEBRAS [J].
PADMANABHAN, AR .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 31 (02) :139-149