Evaluation of lipase access tunnels and analysis of substance transport in comparison with experimental data

被引:7
作者
de Melo, Jessica Jessi C. [1 ]
Goncalves, Jesica Ribeiro [1 ]
Brandao, Luma M. de S. [1 ]
Souza, Ranyere L. [1 ,2 ]
Pereira, Matheus M. [3 ]
Lima, Alvaro S. [1 ,2 ]
Soares, Cleide M. F. [1 ,2 ]
机构
[1] Univ Tiradentes, UNIT, Av Murilo Dantas 300, BR-49032490 Aracaju, SE, Brazil
[2] Inst Tecnol & Pesquisa, ITP, Av Murilo Dantas 300, BR-49032490 Aracaju, SE, Brazil
[3] Univ Aveiro, CICECO Chem Dept, P-3810193 Aveiro, Portugal
关键词
Enzymatic tunnel; Fatty acids; Molecular docking; Caver Web1; 0; CANDIDA-RUGOSA LIPASE; BURKHOLDERIA-CEPACIA LIPASE; PORCINE PANCREATIC LIPASE; THERMOMYCES-LANUGINOSUS; ESTERIFICATION REACTION; IMMOBILIZED LIPASE; OIL; BIOLUBRICANTS; BIOCATALYST; SELECTIVITY;
D O I
10.1007/s00449-022-02731-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Lipases (E.C. 3.1.1.3) have buried active sites and used access tunnels in the transport of substrates and products for biotransformation processes. Computational methods are used to predict the trajectory and energy profile of ligands through these tunnels, and they complement the experimental methodologies because they filter data, optimizing laboratory time and experimental costs. Access tunnels of Burkholderia cepacia lipase (BCL), Candida rugosa lipase (CRL), and porcine pancreas lipase (PPL) and the transport of fatty acids, alcohols and esters through the tunnels were evaluated using the online server CaverWeb V1.0, and server calculation results were compared with experimental data (productivity). BCL showed higher productivity with palmitic acid-C16:0 (4029.95 mu mol/h mg); CRL obtained productivity for oleic acid-C18:1 (380.80 mu mol/h mg), and PPL achieved productivity for lauric acid-C12:0 (71.27 mu mol/h mg). The highest probability of transport for BCL is through the tunnels 1 and 2, for CRL through the tunnel 1, and for PPL through the tunnels 1, 2, 3 and 4. Thus, the best in silico result was the transport of the substrates palmitic acid and ethanol and product ethyl palmitate in tunnel 1 of BCL. This result corroborates with the best result for the productivity data (higher productivity for BCL with palmitic acid-4029.95 mu mol/h mg). The combination of in silico evaluation and experimental data gave similar results, demonstrating that in silico approaches are a promising alternative for reducing screening tests and minimizing laboratory time in the bio-catalysis area by identifying the lipases with the greatest reaction potential, as in the case of this proposal.
引用
收藏
页码:1149 / 1162
页数:14
相关论文
共 60 条
[1]   Enzymatic transesterification of coconut oil by using immobilized lipase on biochar: An experimental and molecular docking study [J].
Almeida, Lays C. ;
Barbosa, Milson S. ;
de Jesus, Felipe A. ;
Santos, Roberta M. ;
Fricks, Alini T. ;
Freitas, Lisiane S. ;
Pereira, Matheus M. ;
Lima, Alvaro S. ;
Soares, Cleide M. F. .
BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2021, 68 (04) :801-808
[2]   Isotherm, kinetic, mechanism and thermodynamic studies of adsorption of a microbial lipase on a mesoporous and hydrophobic resin [J].
Alves, Michelle D. ;
Aracri, Fernanda M. ;
Cren, Erika C. ;
Mendes, Adriano A. .
CHEMICAL ENGINEERING JOURNAL, 2017, 311 :1-12
[3]   In Silico Evaluation of Enzymatic Tunnels in the Biotransformation of α-Tocopherol Esters [J].
Azevedo, Tamara Stela Mendonca ;
Silva, Lavinia Kelly Barros ;
Lima, Alvaro Silva ;
Pereira, Matheus Mendonca ;
Franceschi, Elton ;
Faria Soares, Cleide Mara .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 9
[4]   Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations [J].
Barbe, Sophie ;
Lafaquiere, Vincent ;
Guieysse, David ;
Monsan, Pierre ;
Remaud-Simeon, Magali ;
Andre, Isabelle .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2009, 77 (03) :509-523
[5]   Optimization of the enzymatic hydrolysis of Moringa oleifera Lam oil using molecular docking analysis for fatty acid specificity [J].
Barbosa, Milson S. ;
Freire, Cintia C. C. ;
Almeida, Lays C. ;
Freitas, Lisiane S. ;
Souza, Ranyere L. ;
Pereira, Emandes B. ;
Mendes, Adriano A. ;
Pereira, Matheus M. ;
Lima, Alvaro S. ;
Soares, Cleide M. F. .
BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2019, 66 (05) :823-832
[6]  
Benjamin S, 1998, YEAST, V14, P1069, DOI 10.1002/(SICI)1097-0061(19980915)14:12<1069::AID-YEA303>3.3.CO
[7]  
2-B
[8]   An insight into the solvent effect on the positional selectivity of the immobilized lipase from Burkholderia cepacia in 1,3-diolein synthesis [J].
Bi, Yan-Hong ;
Wang, Zhao-Yu ;
Duan, Zhang-Qun ;
Zhao, Xiang-Jie ;
Chen, Xiao-Ming ;
Nie, Ling-Hong .
RSC ADVANCES, 2015, 5 (29) :23122-23124
[9]  
Bouachrine Mohammed, 2021, CHEM REV LETT, V4, P145, DOI [10.22034/crl.2021.262806.1098, DOI 10.22034/CRL.2021.262806.1098, 10.22034/CRL.2021.262806.1098]
[10]   Lipase activation by molecular bioimprinting: The role of interactions between fatty acids and enzyme active site [J].
Brandao, Luma M. de S. ;
Barbosa, Milson S. ;
Souza, Ranyere L. ;
Pereira, Matheus M. ;
Lima, Alvaro S. ;
Soares, Cleide M. F. .
BIOTECHNOLOGY PROGRESS, 2021, 37 (01)