A NOTE ON NODAL NON-RADIALLY SYMMETRIC SOLUTIONS TO EMDEN-FOWLER EQUATIONS

被引:0
作者
Ramos, Miguel [1 ]
Zou, Wenming [2 ]
机构
[1] Univ Lisbon, CMAF Fac Sci, P-1649003 Lisbon, Portugal
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Emden-Fowler equation; nodal solutions; symmetric solutions; variational methods;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of an unbounded sequence of sign-changing and non-radially symmetric solutions to the problem -Delta u = vertical bar u vertical bar(p-1) u in Omega, u = 0 on partial derivative Omega, u(gx) = u(x), x is an element of Omega, g is an element of G, where Omega is an annulus of R(N) (N >= 3), 1 < p < (N + 2)/(N - 2) and G is a non-transitive closed subgroup of the orthogonal group O(N).
引用
收藏
页数:5
相关论文
共 14 条
[1]   Sign changing solutions of superlinear Schrodinger equations [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :25-42
[2]   Critical point theory on partially ordered Hilbert spaces [J].
Bartsch, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (01) :117-152
[3]   Remarks on variational methods and lower-upper solutions [J].
Conti, Monica ;
Merizzi, Luca ;
Terracini, Susanna .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (04) :371-393
[4]  
GHOUSSOUB N, 1993, CAMBRIDGE TRACTS MAT, V17
[5]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[6]   Orthogonal group invariant solutions of the Emden-Fowler equation [J].
Kajikiya, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (07) :845-896
[7]  
Kajikiya R., 1991, HIROSHIMA MATH J, V21, P111
[8]  
Kajikiya R., 1990, HIROSHIMA MATH J, V20, P259, DOI DOI 10.32917/hmj/1206129178
[9]   UNIQUENESS OF SOLUTIONS OF NON-LINEAR DIRICHLET PROBLEMS [J].
NI, WM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 50 (02) :289-304
[10]  
Rabinowitz P., 1986, CBMS REG C, V65