In Situ Grazing-Incidence Wide-Angle Scattering Reveals Mechanisms for Phase Distribution and Disorientation in 2D Halide Perovskite Films

被引:104
作者
Hoffman, Justin M. [1 ]
Strzalka, Joseph [2 ]
Flanders, Nathan C. [1 ]
Hadar, Ido [1 ]
Cuthriell, Shelby A. [1 ]
Zhang, Qingteng [2 ]
Schaller, Richard D. [1 ,3 ]
Dichtel, William R. [1 ]
Chen, Lin X. [1 ,4 ]
Kanatzidis, Mercouri G. [1 ]
机构
[1] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[4] Argonne Natl Lab Lemont, Chem Sci & Engn Div, 9700 South Cass Ave, Lemont, IL 60439 USA
关键词
2D halide perovskites; film formation; kinetics; photovoltaics; spin-coating; thin films; POWER CONVERSION EFFICIENCY; SOLAR-CELLS; KINETICS; CRYSTALLIZATION;
D O I
10.1002/adma.202002812
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
2D hybrid halide perovskites with the formula (A ')(2)(A)(n)(-1)Pb(n)I(3)(n)(+1)have remarkable stability and promising efficiency in photovoltaic and optoelectronic devices, yet fundamental understanding of film formation, key to optimizing these devices, is lacking. Here, in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) is used to monitor film formation during spin-coating. This elucidates the general film formation mechanism of 2D halide perovskites during one-step spin-coating. There are three stages of film formation: sol-gel, oriented 3D, and 2D. Three precursor phases form during the sol-gel stage and transform to perovskite, first giving a highly oriented 3D-like phase at the air/liquid interface followed by subsequent nucleations forming slightly less oriented 2D perovskite. Furthermore, heating before crystallization leads to fewer nucleations and faster removal of the precursors, improving orientation. This outlines the primary causes of phase distribution and perpendicular orientation in 2D perovskite films and paves the way for rationally designed film fabrication techniques.
引用
收藏
页数:8
相关论文
共 46 条
[21]   Thin film phase transformation kinetics: From theory to experiment [J].
Moghadam, M. M. ;
Voorhees, P. W. .
SCRIPTA MATERIALIA, 2016, 124 :164-168
[22]   Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases [J].
Munir, Rahim ;
Sheikh, Arif D. ;
Abdelsamie, Maged ;
Hu, Hanlin ;
Yu, Liyang ;
Zhao, Kui ;
Kim, Taesoo ;
El Tall, Omar ;
Li, Ruipeng ;
Smilgies, Detlef-M. ;
Amassian, Aram .
ADVANCED MATERIALS, 2017, 29 (02)
[23]   Luminescent and Photoconductive Layered Lead Halide Perovskite Compounds Comprising Mixtures of Cesium and Guanidinium Cations [J].
Nazarenko, Olga ;
Kotyrba, Martin Robert ;
Woerle, Michael ;
Cueryo-Reyes, Eduardo ;
Yakunin, Sergii ;
Koyalenko, Maksym V. .
INORGANIC CHEMISTRY, 2017, 56 (19) :11552-11564
[24]   Aligned and Graded Type-II Ruddlesden-Popper Perovskite Films for Efficient Solar Cells [J].
Qing, Jian ;
Liu, Xiao-Ke ;
Li, Mingjie ;
Liu, Feng ;
Yuan, Zhongcheng ;
Tiukalova, Elizaveta ;
Yan, Zhibo ;
Duchamp, Martial ;
Chen, Shi ;
Wang, Yuming ;
Bai, Sai ;
Liu, Jun-Ming ;
Snaith, Henry J. ;
Lee, Chun-Sing ;
Sum, Tze Chien ;
Gao, Feng .
ADVANCED ENERGY MATERIALS, 2018, 8 (21)
[25]   Compositional and orientational control in metal halide perovskites of reduced dimensionality [J].
Quintero-Bermudez, Rafael ;
Gold-Parker, Aryeh ;
Proppe, Andrew H. ;
Munir, Rahim ;
Yang, Zhenyu ;
Kelley, Shana O. ;
Amassian, Aram ;
Toney, Michael F. ;
Sargent, Edward H. .
NATURE MATERIALS, 2018, 17 (10) :900-+
[26]   Structure of Organometal Halide Perovskite Films as Determined with Grazing-Incidence X-Ray Scattering Methods [J].
Schlipf, Johannes ;
Mueller-Buschbaum, Peter .
ADVANCED ENERGY MATERIALS, 2017, 7 (16)
[27]   NUMERICAL DATA FOR SOME COMMONLY USED SOLID STATE REACTION EQUATIONS [J].
SHARP, JH ;
BRINDLEY, GW ;
ACHAR, BNN .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1966, 49 (07) :379-&
[28]   Unexpectedly Strong Auger Recombination in Halide Perovskites [J].
Shen, Jimmy-Xuan ;
Zhang, Xie ;
Das, Suvadip ;
Kioupakis, Emmanouil ;
Van de Walle, Chris G. .
ADVANCED ENERGY MATERIALS, 2018, 8 (30)
[29]  
Smilgies DM, 2009, J APPL CRYSTALLOGR, V42, P1030, DOI [10.1107/S00218898090401, 10.1107/S0021889809040126]
[30]  
Smith I. C., 2014, Angew. Chem. Int. Ed, V126, P11414, DOI DOI 10.1002/ANIE.201406466