Exploring isospectral spring-mass systems with firefly algorithm

被引:17
作者
Dutta, Rajdeep [1 ]
Ganguli, Ranjan [1 ]
Mani, V. [1 ]
机构
[1] Indian Inst Sci, Dept Aerosp Engn, Bangalore 560012, Karnataka, India
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2011年 / 467卷 / 2135期
关键词
isospectral systems; optimization; vibration; Jacobi matrix; MATRIX; RECONSTRUCTION; OPTIMIZATION; BEAMS; RODS;
D O I
10.1098/rspa.2011.0119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper investigates in-line spring-mass systems (An), fixed at one end and free at the other, with n-degrees of freedom (d.f.). The objective is to find feasible in-line systems (B-n) that are isospectral to a given system. The spring-mass systems, A(n) and B-n, are represented by Jacobi matrices. An error function is developed with the help of the Jacobi matrices A(n) and B-n. The problem of finding the isospectral systems is posed as an optimization problem with the aim of minimizing the error function. The approach for creating isospectral systems uses the fact that the trace of two isospectral Jacobi matrices A(n) and B-n should be identical. A modification is made to the diagonal elements of the given Jacobi matrix (A(n)), to create the isospectral systems. The optimization problem is solved using the firefly algorithm augmented by a local search procedure. Numerical results are obtained and resulting isospectral systems are shown for 4 d.f. and 10 d.f. systems.
引用
收藏
页码:3222 / 3240
页数:19
相关论文
共 28 条
[1]   An electromagnetism-like mechanism for global optimization [J].
Birbil, SI ;
Fang, SC .
JOURNAL OF GLOBAL OPTIMIZATION, 2003, 25 (03) :263-282
[2]   A SURVEY OF MATRIX INVERSE EIGENVALUE PROBLEMS [J].
BOLEY, D ;
GOLUB, GH .
INVERSE PROBLEMS, 1987, 3 (04) :595-622
[3]  
BOOR CD, 1978, LINEAR ALGEBRA APPL, V21, P245, DOI 10.1016/0024-3795(78)90086-1
[4]   On the least squares solution of inverse eigenvalue problems [J].
Chen, XZ ;
Chu, MT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (06) :2417-2430
[5]   Inverse eigenvalue problems [J].
Chu, MT .
SIAM REVIEW, 1998, 40 (01) :1-39
[7]  
EGANA JC, 2000, PROYECCIONES-ANTOFAG, V19, P27, DOI DOI 10.4067/S0716-09172000000100003
[8]   GENERATION AND USE OF ORTHOGONAL POLYNOMIALS FOR DATA-FITTING WITH A DIGITAL COMPUTER [J].
FORSYTHE, GE .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1957, 5 (02) :74-88
[9]   Stochastic optimization: a review [J].
Fouskakis, D ;
Draper, D .
INTERNATIONAL STATISTICAL REVIEW, 2002, 70 (03) :315-349
[10]  
GLADWELL GM, 1989, INVERSE PROBLEMS VIB