Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics

被引:42
作者
Choudhury, Deepak [1 ,3 ]
Mo, Xuejun [1 ,2 ]
Iliescu, Ciprian [1 ]
Tan, Loo Ling [1 ]
Tong, Wen Hao [1 ,3 ]
Yu, Hanry [1 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ]
机构
[1] ASTAR, Inst Bioengn & Nanotechnol, Singapore 138669, Singapore
[2] Natl Univ Singapore, Dept Chem, Fac Sci, Singapore 117543, Singapore
[3] NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
[4] NUS, Mechanobiol Inst, Singapore 117411, Singapore
[5] NUS, Dept Physiol, Singapore 117597, Singapore
[6] Singapore MIT Alliance Res & Technol, Singapore 117543, Singapore
[7] Singapore MIT Alliance, CSB Program, Singapore 117576, Singapore
[8] NUS, NUS Tissue Engn Programme, DSO Labs, Singapore 117597, Singapore
[9] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
BIOMICROFLUIDICS | 2011年 / 5卷 / 02期
关键词
SELF-ASSEMBLED MONOLAYERS; OPTICAL TWEEZER ARRAYS; CELL-BASED BIOSENSORS; WHITE BLOOD-CELLS; DIELECTROPHORETIC CHIP; SINGLE CELLS; PERFUSION-CULTURE; LIVING CELLS; PDMS MICROBIOREACTOR; SEPARATION METHOD;
D O I
10.1063/1.3593407
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
There are a plethora of approaches to construct microtissues as building blocks for the repair and regeneration of larger and complex tissues. Here we focus on various physical and chemical trapping methods for engineering three-dimensional microtissue constructs in microfluidic systems that recapitulate the in vivo tissue microstructures and functions. Advances in these in vitro tissue models have enabled various applications, including drug screening, disease or injury models, and cell-based biosensors. The future would see strides toward the mesoscale control of even finer tissue microstructures and the scaling of various designs for high throughput applications. These tools and knowledge will establish the foundation for precision engineering of complex tissues of the internal organs for biomedical applications. (C) 2011 American Institute of Physics. [doi:10.1063/1.3593407]
引用
收藏
页数:18
相关论文
共 225 条
[1]   Cell culture: Biology's new dimension [J].
Abbott, A .
NATURE, 2003, 424 (6951) :870-872
[2]   Cell-patterning using poly (ethylene glycol)-modified magnetite nanoparticles [J].
Akiyama, Hirokazu ;
Ito, Akira ;
Kawabe, Yoshinori ;
Kamihira, Masamichi .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 92A (03) :1123-1130
[3]   Genetically engineered angiogenic cell sheets using magnetic force-based gene delivery and tissue fabrication techniques [J].
Akiyama, Hirokazu ;
Ito, Akira ;
Kawabe, Yoshinori ;
Kamihira, Masamichi .
BIOMATERIALS, 2010, 31 (06) :1251-1259
[4]   Fabrication of complex three-dimensional tissue architectures using a magnetic force-based cell patterning technique [J].
Akiyama, Hirokazu ;
Ito, Akira ;
Kawabe, Yoshinori ;
Kamihira, Masamichi .
BIOMEDICAL MICRODEVICES, 2009, 11 (04) :713-721
[5]   Photo- and electropatterning of hydrogel-encapsulated living cell arrays [J].
Albrecht, DR ;
Tsang, VL ;
Sah, RL ;
Bhatia, SN .
LAB ON A CHIP, 2005, 5 (01) :111-118
[6]   Probing the role of multicellular organization in three-dimensional microenvironments [J].
Albrecht, DR ;
Underhill, GH ;
Wassermann, TB ;
Sah, RL ;
Bhatia, SN .
NATURE METHODS, 2006, 3 (05) :369-375
[7]   Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities [J].
Andersson, H ;
van den Berg, A .
LAB ON A CHIP, 2004, 4 (02) :98-103
[8]   On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel [J].
Arai, F ;
Ng, C ;
Maruyama, H ;
Ichikawa, A ;
El-Shimy, H ;
Fukuda, T .
LAB ON A CHIP, 2005, 5 (12) :1399-1403
[9]  
Arai F, 2001, ELECTROPHORESIS, V22, P283, DOI 10.1002/1522-2683(200101)22:2<283::AID-ELPS283>3.0.CO
[10]  
2-C