Genetics of seed flavonoid content and antioxidant activity in cowpea (Vigna unguiculata L. Walp.)

被引:20
|
作者
Nassourou, Maina Antoine [1 ]
Njintang, Yanou Nicolas [1 ,2 ]
Noubissie, Tchiagam Jean-Baptiste [1 ]
Nguimbou, Richard Marcel [2 ]
Bell, Joseph Martin [3 ]
机构
[1] Univ Ngaoundere, Fac Sci, Dept Biol Sci, POB 454, Ngaoundere, Cameroon
[2] Univ Ngaoundere, ENSAI, Dept Food Sci & Nutr, POB 454, Ngaoundere, Cameroon
[3] Univ Yaounde I, Fac Sci, Dept Plant Biol, Genet & Plant Breeding Unit, POB 812, Yaounde, Cameroon
来源
CROP JOURNAL | 2016年 / 4卷 / 05期
关键词
Cowpea; Genetic improvement; Diallel analysis; Antioxidant properties; PHENOLIC-COMPOUNDS; CAPACITY; INHERITANCE; VARIETIES; ENZYMES; ACID;
D O I
10.1016/j.cj.2016.05.011
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Information about the type of gene action governing the inheritance of cowpea seed flavonoid content and antioxidant activity is prerequisite for starting an effective breeding program for developing improved varieties. For this purpose, half-diallel crosses among seven diverse parents were made. The homozygous parents and 21 F-1 hybrids were evaluated at Maroua in the Sudano-Sahelian zone of Cameroon using a randomized complete block design with three replicates. Flour samples produced from decorticated seeds were used for biochemical analysis. Analysis of variance showed significant differences (P < 0.001) among genotypes for the studied traits with ranges of 363.6-453.9 mg rutin equivalent per 100 g dry weight (DW) for total flavonoids, 13.38-30.73 mg ascorbic acid equivalent per 1 g DW for ferric iron reducing activity, 70.98-266.93 mg trolox equivalent per 100 g DW for 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, and 90.93-370.62 mg trolox equivalent per 100 g DW for 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging activity. Both additive and non-additive gene effects were significant in the genetic control of these traits, but dominance variance was greater than additive variance. The traits were mainly controlled by over dominance model suggesting a selection in the delayed generations. Broad-and narrow-sense heritability estimates varied from 0.90 to 0.99 and from 0.12 to 0.45, respectively. The variances due to both general and specific combining ability were highly significant for all studied traits. Recessive alleles had positive effects on DPPH and ABTS scavenging activities, whereas dominant alleles had positive effects on flavonoid content and ferric iron reducing activity. These results could help cowpea breeders to improve the antioxidant potential of cowpea seeds by appropriate selection. (C) 2016 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:391 / 397
页数:7
相关论文
共 50 条
  • [1] Genetics of seed flavonoid content and antioxidant activity in cowpea(Vigna unguiculata L. Walp.)
    Maina Antoine Nassourou
    Yanou Nicolas Njintang
    Tchiagam Jean-Baptiste Noubissié
    Richard Marcel Nguimbou
    Joseph Martin Bell
    The Crop Journal, 2016, 4 (05) : 391 - 397
  • [2] Genetics of seed related attributes in cowpea [Vigna unguiculata (L.) Walp.]
    Patel, J. B.
    Patel, Hiral
    Sharma, S. C.
    Acharya, S.
    LEGUME RESEARCH, 2016, 39 (01) : 1 - 6
  • [3] Genetics of juvenile phase in cowpea [Vigna unguiculata (L.) Walp.]
    Ishiyaku, Mohammad F.
    Singh, Bir B.
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2003, 1 (3-4): : 133 - 136
  • [4] The genome of cowpea (Vigna unguiculata [L.] Walp.)
    Lonardi, Stefano
    Munoz-Amatriain, Maria
    Liang, Qihua
    Shu, Shengqiang
    Wanamaker, Steve I.
    Lo, Sassoum
    Tanskanen, Jaakko
    Schulman, Alan H.
    Zhu, Tingting
    Luo, Ming-Cheng
    Alhakami, Hind
    Ounit, Rachid
    Hasan, Abid Md.
    Verdier, Jerome
    Roberts, Philip A.
    Santos, Jansen R. P.
    Ndeve, Arsenio
    Dolezel, Jaroslav
    Vrana, Jan
    Hokin, Samuel A.
    Farmer, Andrew D.
    Cannon, Steven B.
    Close, Timothy J.
    PLANT JOURNAL, 2019, 98 (05): : 767 - 782
  • [5] Diallel analysis for seed yield in cowpea [Vigna unguiculata (L.) Walp.]
    Patel, B. N.
    Desai, R. T.
    Koladiya, P. B.
    Chaudhari, K. N.
    RESEARCH ON CROPS, 2013, 14 (01) : 135 - 139
  • [6] Anthocyanins in Cowpea [Vigna unguiculata (L.) Walp. ssp unguiculata]
    Ha, Tae Joung
    Lee, Myoung-Hee
    Jeong, Yu Na
    Lee, Jin Hwan
    Han, Sang-Ik
    Park, Chang-Hwan
    Pae, Suk-Bok
    Hwang, Chung-Dong
    Baek, In-Youl
    Park, Keum-Yong
    FOOD SCIENCE AND BIOTECHNOLOGY, 2010, 19 (03) : 821 - 826
  • [7] VIRUSES OF COWPEA, VIGNA UNGUICULATA L. (WALP.), IN NIGERIA
    Chant, S. R.
    ANNALS OF APPLIED BIOLOGY, 1959, 47 (03) : 565 - +
  • [8] GENETIC DIVERGENCE IN COWPEA [VIGNA UNGUICULATA (L.) WALP.]
    Dalsaniya, S. B.
    Poshiya, V. K.
    Savaliya, J. J.
    Pansuriya, A. G.
    Davada, B. K.
    LEGUME RESEARCH, 2009, 32 (04) : 250 - 254
  • [9] Introgression Breeding in Cowpea [Vigna unguiculata(L.) Walp.]
    Boukar, Ousmane
    Abberton, Michael
    Oyatomi, Olaniyi
    Togola, Abou
    Tripathi, Leena
    Fatokun, Christian
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [10] Genetic analysis of seed proteins contents in cowpea (Vigna unguiculata L. Walp.)
    Tchiagam, Jean-Baptiste Noubissie
    Bell, Joseph Martin
    Nassourou, Antoine M.
    Njintang, Nicolas Y.
    Youmbi, Emmanuel
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (16): : 3077 - 3086