Symmetry Operators and Separation of Variables for Dirac's Equation on Two-Dimensional Spin Manifolds

被引:3
作者
Carignano, Alberto [1 ]
Fatibene, Lorenzo [2 ]
McLenaghan, Raymond G. [3 ]
Rastelli, Giovanni [2 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1TN, England
[2] Univ Turin, Dipartimento Matemat, I-10124 Turin, Italy
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Dirac equation; symmetry operators; separation of variables; CURVED SPACE-TIME; GENERAL-RELATIVITY; SYSTEMS; FIELDS; GRAVITY;
D O I
10.3842/SIGMA.2011.057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A signature independent formalism is created and utilized to determine the general second-order symmetry operators for Dirac's equation on two-dimensional Lorentzian spin manifolds. The formalism is used to characterize the orthonormal frames and metrics that permit the solution of Dirac's equation by separation of variables in the case where a second-order symmetry operator underlies the separation. Separation of variables in complex variables on two-dimensional Minkowski space is also considered.
引用
收藏
页数:13
相关论文
共 25 条
[1]  
[Anonymous], 1983, INT SERIES MONOGRAPH
[2]  
[Anonymous], 1977, ENCY MATH ITS APPL
[3]   Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation [J].
Benenti, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) :6578-6602
[4]   INTERACTION OF NEUTRINOS AND GRAVITATIONAL FIELDS [J].
BRILL, DR ;
WHEELER, JA .
REVIEWS OF MODERN PHYSICS, 1957, 29 (03) :465-479
[5]   A geometrical approach to the problem of integrability of Hamiltonian systems by separation of variables [J].
Bruce, AT ;
McLenaghan, RG ;
Smirnov, RG .
JOURNAL OF GEOMETRY AND PHYSICS, 2001, 39 (04) :301-322
[6]   GENERALIZED TOTAL ANGULAR-MOMENTUM OPERATOR FOR THE DIRAC-EQUATION IN CURVED SPACE-TIME [J].
CARTER, B ;
MCLENAGHAN, RG .
PHYSICAL REVIEW D, 1979, 19 (04) :1093-1097
[7]   Two-dimensional dilaton gravity coupled to massless spinors [J].
Cavaglia, M ;
Fatibene, L ;
Francaviglia, M .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (11) :3627-3643
[8]   Geometrical classification of Killing tensors on bidimensional flat manifolds [J].
Chanu, C. ;
Degiovanni, L. ;
McLenaghan, R. G. .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (07)
[9]   Complex variables for separation of the Hamilton-Jacobi equation on real pseudo-Riemannian manifolds [J].
Degiovanni, Luca ;
Rastelli, Giovanni .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
[10]   Gauge formalism for general relativity and fermionic matter [J].
Fatibene, L ;
Ferraris, M ;
Francaviglia, M ;
Godina, M .
GENERAL RELATIVITY AND GRAVITATION, 1998, 30 (09) :1371-1389