Anisotropic Aharonov-Bohm effect

被引:0
作者
Adami, R [1 ]
机构
[1] Univ Rome 1, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
D O I
暂无
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Results obtained for the nonrelativistic Aharonov-Bohm effect, together with contact interactions, are presented and discussed. These results are compared with those concerning the spectrum and the scattering amplitude for two interactions separately. We use the formalism of first quantization and refer, for technical tools, to the von Neumann-Krein theory for the construction of self-adjoint extensions of symmetric operators and to scattering theory. Despite the rotational invariance of both magnetic and contact interactions, their superposition can give rise to an anisotropy effect.
引用
收藏
页码:1954 / 1959
页数:6
相关论文
共 12 条
[1]   On the Aharonov-Bohm Hamiltonian [J].
Adami, R ;
Teta, A .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 43 (01) :43-53
[2]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[3]  
AKHIEZER NI, 1963, THEORY LINEAR OPERAT
[4]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[5]  
BAMBUSI D, UNPUB
[6]   Aharonov-Bohm effect with δ-type interaction [J].
Dabrowski, L ;
Stovicek, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (01) :47-62
[7]   AHARONOV-BOHM SCATTERING-AMPLITUDE [J].
HAGEN, CR .
PHYSICAL REVIEW D, 1990, 41 (06) :2015-2017
[8]  
Lerda A., 1992, Lecture Notes in Physics Monographs
[9]  
NOJA D, IN PRESS ANN I H POI
[10]  
REED M., 1979, Methods of Modern Mathematical Physics