Stability and Hopf bifurcations of a three-species symbiosis model with delays

被引:3
作者
Gao, Qin [1 ]
机构
[1] Hebei Univ Sci & Technol, Sch Econ & Management, Shijiazhuang, Peoples R China
来源
2009 INTERNATIONAL WORKSHOP ON CHAOS-FRACTALS THEORIES AND APPLICATIONS (IWCFTA 2009) | 2009年
关键词
symbiosis model; delays; Hopf bifurcations; normal form; center manifold theorem; STAGE-STRUCTURE; PREY; SYSTEM;
D O I
10.1109/IWCFTA.2009.63
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, a three-species symbiosis Lotka Volterra model with discrete delays is considered. The stability of positive equilibrium and the existence of Hopf bifurcations are investigated firstly and then the direction and the stability criteria of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem.
引用
收藏
页码:272 / 276
页数:5
相关论文
共 11 条
[1]  
[Anonymous], 1981, THEORY APPL HOPF BIF, DOI DOI 10.1090/CONM/445
[2]   Stability and Hopf bifurcation analysis in a prey-predator system with stage-structure for prey and time delay [J].
Chen Yuanyuan ;
Song Changming .
CHAOS SOLITONS & FRACTALS, 2008, 38 (04) :1104-1114
[3]   Stability and Hopf bifurcation analysis in a three-level food chain system with delay [J].
Chen, Yuanyuan ;
Yu, Jiang ;
Sun, Chengjun .
CHAOS SOLITONS & FRACTALS, 2007, 31 (03) :683-694
[4]   Modeling the mutualistic interactions between tubeworms and microbial consortia [J].
Cordes, EE ;
Arthur, MA ;
Shea, K ;
Arvidson, RS ;
Fisher, CR .
PLOS BIOLOGY, 2005, 3 (03) :497-506
[5]  
Uyenoyama MK, 2004, EVOLUTION OF POPULATION BIOLOGY, P254, DOI 10.1017/CBO9780511542619.016
[6]   Stability and Hopf bifurcation in a delayed competitive web sites model [J].
Xiao, M ;
Cao, JD .
PHYSICS LETTERS A, 2006, 353 (2-3) :138-150
[7]   Stability and Hopf bifurcation in a predator-prey model with stage structure for the predator [J].
Xu, Rui ;
Ma, Zhien .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (04) :1444-1460
[8]   The effect of dispersal on the permanence of a predator-prey system with time delay [J].
Xu, Rui ;
Ma, Zhien .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (02) :354-369
[9]   Hopf bifurcation in a delayed Lokta-Volterra predator-prey system [J].
Yan, Xiang-Ping ;
Zhang, Cun-Hua .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (01) :114-127
[10]   Hopf bifurcation and global periodic solutions in a delayed predator-prey system [J].
Yan, Xiang-Ping ;
Li, Wan-Tong .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) :427-445