A novel nonconforming uniformly convergent finite element method in two dimensions

被引:10
作者
Roos, HG
Adam, D
Felgenhauer, A
机构
[1] Institut of Numerical Mathematics, Technical University of Dresden
关键词
D O I
10.1006/jmaa.1996.0283
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a new analysis of a nonconforming Galerkin finite element method for solving linear elliptic singularly perturbed boundary value problems for rectangular domains. In the case of ordinary boundary layers the method is shown to be convergent uniformly with respect to the perturbation parameter of order h(1/2) in the energy norm. The trial functions are exponentials fitted to the differential operator. (C) 1996 Academic Press, Inc.
引用
收藏
页码:715 / 755
页数:41
相关论文
共 24 条
[1]  
ADAM D, 1992, NONCONFORMING FINITE
[2]  
ADAM D, 1993, MATHNM061993 TU
[3]  
ADAM D, 1993, MATHNM131993 TU
[4]  
ANGERMANN I, 1991, 148 I ANG MATH U ERL
[5]  
ANGERMANN L, 1991, RAIRO-MATH MODEL NUM, V25, P169
[6]  
BROOKS AN, 1980, P 3 INT C FIN EL MET
[7]  
Doolan E.P., 1980, Uniform Numerical Methods for Problems with Initial and Boundary Layers
[8]   STABILIZED FINITE-ELEMENT METHODS .1. APPLICATION TO THE ADVECTIVE-DIFFUSIVE MODEL [J].
FRANCA, LP ;
FREY, SL ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 95 (02) :253-276
[9]   ELEMENT DIAMETER FREE STABILITY PARAMETERS FOR STABILIZED METHODS APPLIED TO FLUIDS [J].
FRANCA, LP ;
MADUREIRA, AL .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 105 (03) :395-403
[10]  
GARTLAND E, 1988, MATH COMPUT, V51, P99