Branched SL(2,Z) duality

被引:10
作者
Bergshoeff, Eric A. [1 ]
Grosvenor, Kevin T. [2 ]
Lahnsteiner, Johannes [1 ]
Yan, Ziqi [3 ,4 ]
Zorba, Utku [5 ]
机构
[1] Univ Groningen, Van Swinderen Inst, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[3] KTH Royal Inst Technol, NORDITA, Hannes Alfvens Vag 12, SE-10691 Stockholm, Sweden
[4] Stockholm Univ, Hannes Alfvens Vag 12, SE-10691 Stockholm, Sweden
[5] Bogazici Univ, Phys Dept, TR-34342 Istanbul, Turkey
基金
欧盟地平线“2020”;
关键词
D-Branes; String Duality; MATRIX MODEL; MULTIPLET;
D O I
10.1007/JHEP10(2022)131
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate how SL(2,Z) duality is realized in nonrelativistic type IIB superstring theory, which is a self-contained corner of relativistic string theory. Within this corner, we realize manifestly SL(2,Z)-invariant (p, q)-string actions. The construction of these actions imposes a branching between strings of opposite charges associated with the two-form fields. The branch point is determined by these charges and the axion background field. Both branches must be incorporated in order to realize the full SL(2,Z) group. Besides these string actions, we also construct D-instanton and D3-brane actions that manifestly realize the branched SL(2,Z) symmetry.
引用
收藏
页数:31
相关论文
共 54 条
[1]   Dual D-brane actions [J].
Aganagic, M ;
Park, J ;
Popescu, C ;
Schwarz, JH .
NUCLEAR PHYSICS B, 1997, 496 (1-2) :215-230
[2]   'Stringy' Newton-Cartan gravity [J].
Andringa, Roel ;
Bergshoeff, Eric ;
Gomis, Joaquim ;
de Roo, Mees .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (23)
[3]  
[Anonymous], 1996, ICTP SUMM SCH HIGH E
[4]   M theory as a matrix model: A conjecture [J].
Banks, T ;
Fischler, W ;
Shenker, SH ;
Susskind, L .
PHYSICAL REVIEW D, 1997, 55 (08) :5112-5128
[5]  
BECKER K., 2006, String theory and M-theory: A modern introduction
[6]   The supersymmetric Neveu-Schwarz branes of non-relativistic string theory [J].
Bergshoeff, E. A. ;
Lahnsteiner, J. ;
Romano, L. ;
Rosseel, J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
[7]   Non-relativistic ten-dimensional minimal supergravity [J].
Bergshoeff, E. A. ;
Lahnsteiner, J. ;
Romano, L. ;
Rosseel, J. ;
Simsek, C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (12)
[8]   A non-relativistic limit of NS-NS gravity [J].
Bergshoeff, E. A. ;
Lahnsteiner, J. ;
Romano, L. ;
Rosseel, J. ;
Simsek, C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (06)
[9]   Nonrelativistic string theory and T-duality [J].
Bergshoeff, Eric ;
Gomis, Jaume ;
Yan, Ziqi .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11)
[10]   String theory and string Newton?Cartan geometry** Dedicated to the memory of P G O Freund. [J].
Bergshoeff, Eric A. ;
Gomis, Jaume ;
Rosseel, Jan ;
Simsek, Ceyda ;
Yan, Ziqi .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (01)