Tuning microcavities in thermally rearranged polymer membranes for CO2 capture

被引:121
作者
Han, Sang Hoon [1 ,2 ]
Kwon, Hye Jin [1 ]
Kim, Keun Young [1 ]
Seong, Jong Geun [3 ]
Park, Chi Hoon [3 ]
Kim, Seungju [1 ]
Doherty, Cara M. [2 ]
Thornton, Aaron W. [2 ]
Hill, Anita J. [2 ,4 ]
Lozano, Angel E. [5 ]
Berchtoldf, Kathryn A. [6 ]
Lee, Young Moo [1 ,3 ]
机构
[1] Hanyang Univ, Sch Chem Engn, Coll Engn, Seoul 133791, South Korea
[2] Commonwealth Sci & Ind Res Org CSIRO, Div Mat Sci & Engn CMSE, Clayton, Vic 3168, Australia
[3] Hanyang Univ, WCU Dept Energy Engn, Coll Engn, Seoul 133791, South Korea
[4] Commonwealth Sci & Ind Res Org CSIRO, Div Proc Sci & Engn CPSE, Clayton, Vic 3168, Australia
[5] ICTP CSIC, Inst Polimeros, Madrid 28006, Spain
[6] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
POSITRON-ANNIHILATION LIFETIME; METAL-ORGANIC FRAMEWORKS; FREE-VOLUME DISTRIBUTION; HYDROGEN STORAGE; GAS SEPARATION; INTRINSIC MICROPOROSITY; TEMPERATURE-DEPENDENCE; CARBON-DIOXIDE; TRANSPORT; POLYBENZOXAZOLE;
D O I
10.1039/c2cp23729f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microporous materials have a great importance in catalysis, delivery, storage and separation in terms of their performance and efficiency. Most microporous materials are comprised of inorganic frameworks, while thermally rearranged (TR) polymers are a microporous organic polymer which is tuned to optimize the cavity sizes and distribution for difficult separation applications. The sub-nano sized microcavities are controlled by in situ thermal treatment conditions which have been investigated by positron annihilation lifetime spectroscopy (PALS). The size and relative number of cavities increased from room temperature to 230 degrees C resulting in improvements in both permeabilities and selectivities for H-2/CO2 separation due to the significant increase of gas diffusion and decrease of CO2 solubility. The highest performance of the well-tuned TR-polymer membrane was 206 Barrer for H-2 permeability and 6.2 of H-2/CO2 selectivity, exceeding the polymeric upper bound for gas separation membranes.
引用
收藏
页码:4365 / 4373
页数:9
相关论文
共 47 条
[1]   Molecular transport in nanopores: a theoretical perspective [J].
Bhatia, Suresh K. ;
Bonilla, Mauricio Rincon ;
Nicholson, David .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (34) :15350-15383
[2]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+
[3]   The potential of organic polymer-based hydrogen storage materials [J].
Budd, Peter M. ;
Butler, Anna ;
Selbie, James ;
Mahmood, Khalid ;
McKeown, Neil B. ;
Ghanem, Bader ;
Msayib, Kadhum ;
Book, David ;
Walton, Allan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) :1802-1808
[4]   Gas separation membranes from polymers of intrinsic microporosity [J].
Budd, PM ;
Msayib, KJ ;
Tattershall, CE ;
Ghanem, BS ;
Reynolds, KJ ;
McKeown, NB ;
Fritsch, D .
JOURNAL OF MEMBRANE SCIENCE, 2005, 251 (1-2) :263-269
[5]   Thermally Rearranged (TR) Poly(ether-benzoxazole) Membranes for Gas Separation [J].
Calle, Mariola ;
Lee, Young Moo .
MACROMOLECULES, 2011, 44 (05) :1156-1165
[6]   Thermal cyclodehydration of aromatic precursor polymers to polybenzoxazole and polyimide; their thermal and mechanical properties [J].
Chang, JH ;
Park, KM ;
Lee, IC .
POLYMER BULLETIN, 2000, 44 (01) :63-69
[7]   Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity [J].
Choi, Jung Ik ;
Jung, Chul Ho ;
Han, Sang Hoon ;
Park, Ho Bum ;
Lee, Young Moo .
JOURNAL OF MEMBRANE SCIENCE, 2010, 349 (1-2) :358-368
[8]  
Consolati G, 1996, J POLYM SCI POL PHYS, V34, P357, DOI 10.1002/(SICI)1099-0488(19960130)34:2<357::AID-POLB17>3.0.CO
[9]  
2-I
[10]   Porous, crystalline, covalent organic frameworks [J].
Côté, AP ;
Benin, AI ;
Ockwig, NW ;
O'Keeffe, M ;
Matzger, AJ ;
Yaghi, OM .
SCIENCE, 2005, 310 (5751) :1166-1170