Giant stress-impedance (GSI) sensor for diameter evaluation in cylindrical elements

被引:14
作者
Beato-Lopez, J. J. [1 ,2 ]
Vargas-Silva, G. [3 ]
Perez-Landazabal, J. I. [1 ,2 ]
Gomez-Polo, C. [1 ,2 ]
机构
[1] Univ Publ Navarra, Dept Fis, Edificio Acebos,Campus Arrosadia, Pamplona 31006, Spain
[2] Univ Publ Navarra, Inst Adv Mat INAMAT, Pamplona 31006, Spain
[3] Univ Basque Country, Dept Mech Engn, Mat Technol Grp, Plaza Europa 1, Donostia San Sebastian 20018, Spain
关键词
Magnetoelastic sensor; Magnetoimpedance; Giant stress-impedance; Cross section characterization; Bending stresses; RICH AMORPHOUS WIRE; MAGNETO-IMPEDANCE; INTELLIGENT MEASUREMENTS; TENSILE-STRESS; MI SENSOR; MAGNETOIMPEDANCE; GMI; RIBBONS; MICROWIRE; FILMS;
D O I
10.1016/j.sna.2017.11.040
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, a magnetoelastic sensor to detect the micrometer diameter variations of cylindrical elements is analyzed. A nearly zero magnetostrictive amorphous ribbon with nominal composition (Co0.93Fe0.07)(75)Si12.5B12.5 was selected as sensor nucleus. The sensor, based on Giant Stress-Impedance (GSI), is attached (glued) along the external perimeter of the cylindrical element. Changes in the cylindrical diameter, DM, induce effective tensile stresses, us, on the ribbon, giving rise to sensitive changes in the high frequency impedance, Z. The sensor response is analyzed in terms of the relationship between the induced strains and the diameter variations, where the effect of geometrical factors (cylinder diameter and sample length) is taken into account. The results indicate that although the maximum GSI ratio depends on the pre-induced bending stresses associated to the cylindrical configuration, the sample length plays the dominant role in the sensor sensitivity. The proposed device enables to monitor the micrometric diameter variation in cylindrical elements, with a maximum strain gauge factor (GF for low induced strains. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 42 条
[31]   Magnetostrictive bilayers for multi-functional sensor families [J].
Pfützner, H ;
Kaniusas, E ;
Kosel, J ;
Mehnen, L ;
Meydan, T ;
Vázquez, M ;
Rohn, M ;
Merlo, AM ;
Marquardt, B .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 129 (1-2) :154-158
[32]   Giant magnetoimpedance materials: Fundamentals and applications [J].
Phan, Manh-Huong ;
Peng, Hua-Xin .
PROGRESS IN MATERIALS SCIENCE, 2008, 53 (02) :323-420
[33]   Giant magneto-impedance and stress-impedance effects of microwire composites for sensing applications [J].
Qin, F. X. ;
Peng, H. X. ;
Popov, V. V. ;
Phan, M. H. .
SOLID STATE COMMUNICATIONS, 2011, 151 (04) :293-296
[34]   Sensitive stress sensor using amorphous magnetostrictive wires on both ends fixed double beam and diaphragm [J].
Shen, LP ;
Naruse, Y ;
Kusumoto, D ;
Kita, E ;
Mohri, K ;
Uchiyama, T .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) :3619-3621
[35]   Sensitive acceleration sensor using amorphous wire SI element combined with CMOS IC multivibrator for environmental sensing [J].
Shen, LP ;
Mohri, K ;
Uchiyama, T ;
Honkura, Y .
IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (05) :3667-3669
[36]   Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire [J].
Shen, LP ;
Uchiyama, T ;
Mohri, K ;
Kita, E ;
Bushida, K .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (05) :3355-3357
[37]   Strain sensitivity of highly magnetostrictive amorphous films for use in microstrain sensors [J].
Shin, KH ;
Inoue, M ;
Arai, K .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (08) :5465-5467
[38]   Double core giant magneto-impedance sensors for the inspection of magnetic flux leakage from metal surface cracks [J].
Tehranchi, M. M. ;
Ranjbaran, M. ;
Eftekhari, H. .
SENSORS AND ACTUATORS A-PHYSICAL, 2011, 170 (1-2) :55-61
[39]   Car traffic monitoring system using MI sensor built-in disk set on the road [J].
Uchiyama, T ;
Mohri, K ;
Itho, H ;
Nakashima, K ;
Ohuchi, J ;
Sudo, Y .
IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (05) :3670-3672
[40]  
Young W.C., 2012, Roark's Formulas for Stress and Strain