Giant stress-impedance (GSI) sensor for diameter evaluation in cylindrical elements

被引:14
作者
Beato-Lopez, J. J. [1 ,2 ]
Vargas-Silva, G. [3 ]
Perez-Landazabal, J. I. [1 ,2 ]
Gomez-Polo, C. [1 ,2 ]
机构
[1] Univ Publ Navarra, Dept Fis, Edificio Acebos,Campus Arrosadia, Pamplona 31006, Spain
[2] Univ Publ Navarra, Inst Adv Mat INAMAT, Pamplona 31006, Spain
[3] Univ Basque Country, Dept Mech Engn, Mat Technol Grp, Plaza Europa 1, Donostia San Sebastian 20018, Spain
关键词
Magnetoelastic sensor; Magnetoimpedance; Giant stress-impedance; Cross section characterization; Bending stresses; RICH AMORPHOUS WIRE; MAGNETO-IMPEDANCE; INTELLIGENT MEASUREMENTS; TENSILE-STRESS; MI SENSOR; MAGNETOIMPEDANCE; GMI; RIBBONS; MICROWIRE; FILMS;
D O I
10.1016/j.sna.2017.11.040
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, a magnetoelastic sensor to detect the micrometer diameter variations of cylindrical elements is analyzed. A nearly zero magnetostrictive amorphous ribbon with nominal composition (Co0.93Fe0.07)(75)Si12.5B12.5 was selected as sensor nucleus. The sensor, based on Giant Stress-Impedance (GSI), is attached (glued) along the external perimeter of the cylindrical element. Changes in the cylindrical diameter, DM, induce effective tensile stresses, us, on the ribbon, giving rise to sensitive changes in the high frequency impedance, Z. The sensor response is analyzed in terms of the relationship between the induced strains and the diameter variations, where the effect of geometrical factors (cylinder diameter and sample length) is taken into account. The results indicate that although the maximum GSI ratio depends on the pre-induced bending stresses associated to the cylindrical configuration, the sample length plays the dominant role in the sensor sensitivity. The proposed device enables to monitor the micrometric diameter variation in cylindrical elements, with a maximum strain gauge factor (GF for low induced strains. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 42 条
[1]   Handling magnetic anisotropy and magnetoimpedance effect in flexible multilayers under external stress [J].
Agra, K. ;
Bohn, F. ;
Mori, T. J. A. ;
Callegari, G. L. ;
Dorneles, L. S. ;
Correa, M. A. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 420 :81-87
[2]   Magnetic Nanocomposite Cilia Tactile Sensor [J].
Alfadhel, Ahmed ;
Kosel, Juergen .
ADVANCED MATERIALS, 2015, 27 (47) :7888-7892
[3]   GMI Magnetoelastic Sensor for Measuring Trunk Diameter Variations in Plants [J].
Beato-Lopez, J. J. ;
Algueta-Miguel, J. M. ;
de la Cruz Blas, C. A. ;
Santesteban, L. G. ;
Perez-Landazabal, J. I. ;
Gomez-Polo, C. .
IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (04)
[4]   Effect of tensile and torsion on GMI in amorphous wire [J].
Blanco, JM ;
Zhukov, A ;
Gonzalez, J .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 196 :377-379
[5]   Critical length and giant magnetoimpedance in Co69Fe4.5Ni1.5Si10B15 amorphous ribbons [J].
Chaturvedi, Anurag ;
Dhakal, Tara P. ;
Witanachchi, Sarath ;
Le, Anh-Tuan ;
Phan, Manh-Huong ;
Srikanth, Hariharan .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2010, 172 (02) :146-150
[6]   Stress-impedance effects in sandwiched FeCuNbCrSiB/Cu/FeCuNbCrSiB films [J].
Chen, Ji-An ;
Ding, Wen ;
Zhou, Yong ;
Cao, Ying ;
Zhou, Zhi-Min ;
Zhang, Ya-Min .
MATERIALS LETTERS, 2006, 60 (21-22) :2554-2557
[7]   Sensitive magnetoelastic properties of glass-coated CoMnSiB amorphous microwires for magnetoelastic sensors [J].
Cobeño, AF ;
Blanco, JM ;
Zhukov, A ;
González, J .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 249 (1-2) :402-406
[8]   Magnetoelastic sensor based on GMI of amorphous microwire [J].
Cobeño, AF ;
Zhukov, A ;
Blanco, JM ;
Larin, V ;
Gonzalez, J .
SENSORS AND ACTUATORS A-PHYSICAL, 2001, 91 (1-2) :95-98
[9]   Magneto-impedance sensor for quasi-noncontact monitoring of breathing, pulse rate and activity status [J].
Corodeanu, S. ;
Chiriac, H. ;
Radulescu, L. ;
Lupu, N. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
[10]  
Damian C., 9 INT C REM ENG VIRT