Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

被引:24
作者
Atie, Elie M. [1 ,3 ]
Xie, Zhihua [1 ]
El Eter, Ali [1 ]
Salut, Roland [1 ]
Nedeljkovic, Dusan [2 ]
Tannous, Tony [3 ]
Baida, Fadi I. [1 ]
Grosjean, Thierry [1 ]
机构
[1] Univ Franche Comte, Inst FEMTO ST, UMR CNRS 6174, Dept Opt PM Duffieux, F-25030 Besancon, France
[2] Lovalite Sas, F-25000 Besancon, France
[3] Univ Balamand, Dept Phys, Tripoli, Lebanon
关键词
NANOAPERTURE; MICROCAVITY; RESOLUTION; RESONANCE; PROBES;
D O I
10.1063/1.4918531
中图分类号
O59 [应用物理学];
学科分类号
摘要
Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of "remote" (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices. (c) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 21 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]   Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization [J].
Bachelot, R ;
Ecoffet, C ;
Deloeil, D ;
Royer, P ;
Lougnot, DJ .
APPLIED OPTICS, 2001, 40 (32) :5860-5871
[3]  
Berthelot J, 2014, NAT NANOTECHNOL, V9, P295, DOI [10.1038/NNANO.2014.24, 10.1038/nnano.2014.24]
[4]   Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip [J].
El Eter, Ali ;
Hameed, Nyha M. ;
Baida, Fadi I. ;
Salut, Roland ;
Filiatre, Claudine ;
Nedeljkovic, Dusan ;
Atie, Elie ;
Bole, Samuel ;
Grosjean, Thierry .
OPTICS EXPRESS, 2014, 22 (08) :10072-10080
[5]  
Hagness, 2005, COMPUTATIONAL ELECTR
[6]   Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture [J].
Jin, EX ;
Xu, XF .
APPLIED PHYSICS LETTERS, 2005, 86 (11) :1-3
[7]   Controlling the resonance of a photonic crystal microcavity by a near-field probe [J].
Koenderink, AF ;
Kafesaki, M ;
Buchler, BC ;
Sandoghdar, V .
PHYSICAL REVIEW LETTERS, 2005, 95 (15)
[8]   Nano-optics from sensing to waveguiding [J].
Lal, Surbhi ;
Link, Stephan ;
Halas, Naomi J. .
NATURE PHOTONICS, 2007, 1 (11) :641-648
[9]   Nanoplasmonic Probes of Catalytic Reactions [J].
Larsson, Elin M. ;
Langhammer, Christoph ;
Zoric, Igor ;
Kasemo, Bengt .
SCIENCE, 2009, 326 (5956) :1091-1094
[10]   Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide [J].
Lei, Dang Yuan ;
Appavoo, Kannatassen ;
Sonnefraud, Yannick ;
Haglund, Richard F., Jr. ;
Maier, Stefan A. .
OPTICS LETTERS, 2010, 35 (23) :3988-3990