Investigation of oxide ion flux at cathode/electrolyte interface in solid oxide fuel cell

被引:13
作者
Nagasawa, Tsuyoshi [1 ]
Hanamura, Katsunori [2 ]
机构
[1] Tokyo Inst Technol, Dept Syst & Control Engn, Sch Engn, Meguro Ku, 2-12-1 O-Okayama, Tokyo 1528550, Japan
[2] Tokyo Inst Technol, Dept Mech Engn, Sch Engn, Tokyo, Japan
基金
日本学术振兴会;
关键词
Solid oxide fuel cell; Composite cathode; Quenching; Oxygen isotope; SIMS; Oxide ion flux; OXYGEN-TRANSPORT; DIFFUSION; CATHODE; ANODE; VISUALIZATION; COEFFICIENT; SIMULATION; SITES; MODEL;
D O I
10.1016/j.jpowsour.2018.12.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oxide ion flux at cathode/electrolyte interface of solid oxide fuel cell (SOFC) is investigated through quenching reaction and oxygen isotope labeling. A YSZ (yttria-stabilized zirconia) electrolyte-supported cell with LSM (strontium-doped lanthanum manganite)/YSZ porous cathode is operated by supplying O-18(2) at 973 K and abruptly quenched to room temperature by a direct helium gas-impinging jet to the cell. The O-18 concentration distribution in the cross section of the cathode/electrolyte interface is obtained by secondary ion mass spectrometry (SIMS) with a spatial resolution of 50 nm. From the analysis of oxygen isotope diffusion profiles in YSZ electrolyte, oxide ion flux incorporated from a cathode/electrolyte interface to an electrolyte is first estimated. The obtained flux 1.01-1.43 x 10(-3) mol m(-2) s(-1) at a current density of 0.09A cm(-2) indicates that 22-31% of the overall electrochemical reaction occurs at the cathode/electrolyte interface, while the remaining 69-78% of those proceeds inside the porous cathode under the present experimental condition.
引用
收藏
页码:695 / 700
页数:6
相关论文
共 25 条
[1]   3D finite element model for reconstructed mixed-conducting cathodes: I. Performance quantification [J].
Carraro, Thomas ;
Joos, Jochen ;
Rueger, Bernd ;
Weber, Andre ;
Ivers-Tiffee, Ellen .
ELECTROCHIMICA ACTA, 2012, 77 :315-323
[2]   Combined micro-scale and macro-scale modeling of the composite electrode of a solid oxide fuel cell [J].
Chen, Daifen ;
Bi, Wuxi ;
Kong, Wei ;
Lin, Zijing .
JOURNAL OF POWER SOURCES, 2010, 195 (19) :6598-6610
[3]   Micro-modelling of solid oxide fuel cell electrodes [J].
Costamagna, P ;
Costa, P ;
Antonucci, V .
ELECTROCHIMICA ACTA, 1998, 43 (3-4) :375-394
[4]   Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ/Ce0.8Ge0.2O2-x composite cathode for IT-SOFCs [J].
Esquirol, A ;
Kilner, J ;
Brandon, N .
SOLID STATE IONICS, 2004, 175 (1-4) :63-67
[5]   Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels [J].
Hanna, J. ;
Lee, W. Y. ;
Shi, Y. ;
Ghoniem, A. F. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2014, 40 :74-111
[6]   Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents [J].
Hayashi, H ;
Saitou, T ;
Maruyama, N ;
Inaba, H ;
Kawamura, K ;
Mori, M .
SOLID STATE IONICS, 2005, 176 (5-6) :613-619
[7]   Three-dimensional numerical simulation of solid oxide fuel cell cathode based on lattice Boltzmann method with sub-grid scale models [J].
He, An ;
Kim, Yongtae ;
Shikazono, Naoki .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (34) :21886-21900
[8]   Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique [J].
Horita, T ;
Yamaji, K ;
Sakai, N ;
Xiong, XP ;
Kato, T ;
Yokokawa, H ;
Kawada, T .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :224-230
[9]   Visualization of oxide ionic diffusion at SOFC cathode/electrolyte interfaces by isotope labeling techniques [J].
Horita, Teruhisa ;
Nishi, Mina ;
Shimonosono, Taro ;
Kishimoto, Haruo ;
Yamaji, Katsuhiko ;
Brito, Manuel E. ;
Yokokawa, Harumi .
SOLID STATE IONICS, 2014, 262 :398-402
[10]   Visualization of Oxygen Ionization and Flows in Solid Oxide Fuel Cells [J].
Horita, Teruhisa ;
Shimonosono, Taro ;
Kishimoto, Haruo ;
Yamaji, Katsuhiko ;
Brito, Manuel E. ;
Hori, Yuichi ;
Yokokawa, Harumi .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (12) :B135-B138