Fick and Fokker-Planck Diffusion Law in Inhomogeneous Media

被引:26
作者
Andreucci, D. [1 ]
Cirillo, E. N. M. [1 ]
Colangeli, M. [2 ]
Gabrielli, D. [2 ]
机构
[1] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via A Scarpa 16, I-00161 Rome, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
关键词
Diffusion; Fick's law; Fokker-Planck diffusion law; Hydrodynamic limit; EQUATION;
D O I
10.1007/s10955-018-2187-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss particle diffusion in a spatially inhomogeneous medium. From the microscopic viewpoint we consider independent particles randomly evolving on a lattice. We show that the reversibility condition has a discrete geometric interpretation in terms of weights associated to un-oriented edges and vertices. We consider the hydrodynamic diffusive scaling that gives, as a macroscopic evolution equation, the Fokker-Planck equation corresponding to the evolution of the probability distribution of a reversible spatially inhomogeneous diffusion process. The geometric macroscopic counterpart of reversibility is encoded into a tensor metrics and a positive function. The Fick's law with inhomogeneous diffusion matrix is obtained in the case when the spatial inhomogeneity is associated exclusively with the edge weights. We discuss also some related properties of the systems like a non-homogeneous Einstein relation and the possibility of uphill diffusion.
引用
收藏
页码:469 / 493
页数:25
相关论文
共 50 条
[41]   Verifying raytracing/Fokker-Planck lower-hybrid current drive predictions with self-consistent full-wave/Fokker-Planck simulations [J].
Frank, S. J. ;
Lee, J. P. ;
Wright, J. C. ;
Hutchinson, I. H. ;
Bonoli, P. T. .
JOURNAL OF PLASMA PHYSICS, 2022, 88 (06)
[42]   HYDRODYNAMIC LIMIT FOR A FOKKER-PLANCK EQUATION WITH COEFFICIENTS IN SOBOLEV SPACES [J].
Markou, Ioannis .
NETWORKS AND HETEROGENEOUS MEDIA, 2017, 12 (04) :683-705
[43]   VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION WITH DECAY: A PARTICLE APPROACH [J].
Peletier, Mark A. ;
Renger, D. R. Michiel ;
Veneroni, Marco .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (05)
[44]   Stationary solution and H theorem for a generalized Fokker-Planck equation [J].
Jauregui, Max ;
Lucchi, Anna L. F. ;
Passos, Jean H. Y. ;
Mendes, Renio S. .
PHYSICAL REVIEW E, 2021, 104 (03)
[45]   Structure Preserving Schemes for Nonlinear Fokker-Planck Equations and Applications [J].
Pareschi, Lorenzo ;
Zanella, Mattia .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (03) :1575-1600
[46]   The role of a strong confining potential in a nonlinear Fokker-Planck equation [J].
Alasio, Luca ;
Bruna, Maria ;
Carrillo, Jose Antonio .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193
[47]   A quadrature based method of moments for nonlinear Fokker-Planck equations [J].
Otten, Dustin L. ;
Vedula, Prakash .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[48]   A Pseudospectral Solution of a Fokker-Planck Equation to Model Isomerization Reactions [J].
Shizgal, Bernie D. .
30TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS (RGD 30), 2016, 1786
[49]   The Fokker-Planck equation for coupled Brown-Neel-rotation [J].
Weizenecker, Juergen .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (03)
[50]   Collocation Finite Element Method for the Fractional Fokker-Planck Equation [J].
Karabenli, Hatice ;
Esen, Alaattin ;
Ucar, Yusuf .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2025, 97 (03) :224-232