Fick and Fokker-Planck Diffusion Law in Inhomogeneous Media

被引:26
作者
Andreucci, D. [1 ]
Cirillo, E. N. M. [1 ]
Colangeli, M. [2 ]
Gabrielli, D. [2 ]
机构
[1] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via A Scarpa 16, I-00161 Rome, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
关键词
Diffusion; Fick's law; Fokker-Planck diffusion law; Hydrodynamic limit; EQUATION;
D O I
10.1007/s10955-018-2187-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss particle diffusion in a spatially inhomogeneous medium. From the microscopic viewpoint we consider independent particles randomly evolving on a lattice. We show that the reversibility condition has a discrete geometric interpretation in terms of weights associated to un-oriented edges and vertices. We consider the hydrodynamic diffusive scaling that gives, as a macroscopic evolution equation, the Fokker-Planck equation corresponding to the evolution of the probability distribution of a reversible spatially inhomogeneous diffusion process. The geometric macroscopic counterpart of reversibility is encoded into a tensor metrics and a positive function. The Fick's law with inhomogeneous diffusion matrix is obtained in the case when the spatial inhomogeneity is associated exclusively with the edge weights. We discuss also some related properties of the systems like a non-homogeneous Einstein relation and the possibility of uphill diffusion.
引用
收藏
页码:469 / 493
页数:25
相关论文
共 50 条
[31]   Global existence for a nonlocal and nonlinear Fokker-Planck equation [J].
Dreyer, Wolfgang ;
Huth, Robert ;
Mielke, Alexander ;
Rehberg, Joachim ;
Winkler, Michael .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (02) :293-315
[32]   Fractional Fokker-Planck subdiffusion in alternating force fields [J].
Heinsalu, E. ;
Patriarca, M. ;
Goychuk, I. ;
Haenggi, P. .
PHYSICAL REVIEW E, 2009, 79 (04)
[33]   PENCIL-BEAM APPROXIMATION OF STATIONARY FOKKER-PLANCK [J].
Bal, Guillaume ;
Palacios, Benjamin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (04) :3487-3519
[34]   The Fokker-Planck Approach to Complex Spatiotemporal Disordered Systems [J].
Peinke, J. ;
Tabar, M. R. R. ;
Waechter, M. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01) :107-132
[35]   Well-posedness for the fractional Fokker-Planck equations [J].
Wei, Jinlong ;
Tian, Rongrong .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (03)
[36]   Exact solution of the Fokker-Planck equation for isotropic scattering [J].
Malkov, M. A. .
PHYSICAL REVIEW D, 2017, 95 (02)
[37]   Subspace approximations to the cosmic ray Fokker-Planck equation [J].
Lasuik, J. ;
Shalchi, A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (02) :1635-1650
[38]   Generalized Brownian configuration fields for Fokker-Planck equations including center-of-mass diffusion [J].
Schieber, JD .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2006, 135 (2-3) :179-181
[39]   Global hypoellipticity and compactness of resolvent for Fokker-Planck operator [J].
Li, Wei-Xi .
ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2012, 11 (04) :789-815
[40]   Effects of the Tempered Aging and the Corresponding Fokker-Planck Equation [J].
Deng, Weihua ;
Wang, Wanli ;
Tian, Xinchun ;
Wu, Yujiang .
JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (02) :377-398