Fick and Fokker-Planck Diffusion Law in Inhomogeneous Media

被引:26
作者
Andreucci, D. [1 ]
Cirillo, E. N. M. [1 ]
Colangeli, M. [2 ]
Gabrielli, D. [2 ]
机构
[1] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via A Scarpa 16, I-00161 Rome, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
关键词
Diffusion; Fick's law; Fokker-Planck diffusion law; Hydrodynamic limit; EQUATION;
D O I
10.1007/s10955-018-2187-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss particle diffusion in a spatially inhomogeneous medium. From the microscopic viewpoint we consider independent particles randomly evolving on a lattice. We show that the reversibility condition has a discrete geometric interpretation in terms of weights associated to un-oriented edges and vertices. We consider the hydrodynamic diffusive scaling that gives, as a macroscopic evolution equation, the Fokker-Planck equation corresponding to the evolution of the probability distribution of a reversible spatially inhomogeneous diffusion process. The geometric macroscopic counterpart of reversibility is encoded into a tensor metrics and a positive function. The Fick's law with inhomogeneous diffusion matrix is obtained in the case when the spatial inhomogeneity is associated exclusively with the edge weights. We discuss also some related properties of the systems like a non-homogeneous Einstein relation and the possibility of uphill diffusion.
引用
收藏
页码:469 / 493
页数:25
相关论文
共 50 条
[21]   Large lattice fractional Fokker-Planck equation [J].
Tarasov, Vasily E. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
[22]   A nonlinear Fokker-Planck equation approach for interacting systems: Anomalous diffusion and Tsallis statistics [J].
Marin, D. ;
Ribeiro, M. A. ;
Ribeiro, H., V ;
Lenzi, E. K. .
PHYSICS LETTERS A, 2018, 382 (29) :1903-1907
[23]   Nonlinear inhomogeneous Fokker-Planck models: Energetic-variational structures and long-time behavior [J].
Epshteyn, Yekaterina ;
Liu, Chang ;
Liu, Chun ;
Mizuno, Masashi .
ANALYSIS AND APPLICATIONS, 2022, 20 (06) :1295-1356
[24]   Extended symmetry analysis of a "nonconservative Fokker-Planck equation" [J].
Boyko, Vyacheslav M. ;
Shapoval, Nataliya M. .
GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS AND INTEGRABLE SYSTEM, 5TH INTERNATIONAL WORKSHOP, 2011, :40-46
[25]   Convergences of the squareroot approximation scheme to the Fokker-Planck operator [J].
Heida, Martin .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13) :2599-2635
[26]   On Morel's Fokker-Planck Angular Differencing Scheme [J].
Pouso, Oscar Lopez ;
Ganapol, Barry D. ;
Segura, Javier .
JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2025,
[27]   A Fokker-Planck control framework for multidimensional stochastic processes [J].
Annunziato, M. ;
Borzi, A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) :487-507
[28]   Variational supersymmetric approach to evaluate Fokker-Planck probability [J].
Borges, G. R. P. ;
Drigo Filho, Elso ;
Ricotta, R. M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (18) :3892-3899
[29]   PENCIL-BEAM APPROXIMATION OF FRACTIONAL FOKKER-PLANCK [J].
Bal, Guillaume ;
Palacios, Benjamin .
KINETIC AND RELATED MODELS, 2021, 14 (05) :767-817
[30]   A FOKKER-PLANCK APPROACH TO THE RECONSTRUCTION OF A CELL MEMBRANE POTENTIAL [J].
Annunziato, Mario ;
Borzi, Alfio .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (03) :B623-B649