Fick and Fokker-Planck Diffusion Law in Inhomogeneous Media

被引:24
作者
Andreucci, D. [1 ]
Cirillo, E. N. M. [1 ]
Colangeli, M. [2 ]
Gabrielli, D. [2 ]
机构
[1] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via A Scarpa 16, I-00161 Rome, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
关键词
Diffusion; Fick's law; Fokker-Planck diffusion law; Hydrodynamic limit; EQUATION;
D O I
10.1007/s10955-018-2187-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss particle diffusion in a spatially inhomogeneous medium. From the microscopic viewpoint we consider independent particles randomly evolving on a lattice. We show that the reversibility condition has a discrete geometric interpretation in terms of weights associated to un-oriented edges and vertices. We consider the hydrodynamic diffusive scaling that gives, as a macroscopic evolution equation, the Fokker-Planck equation corresponding to the evolution of the probability distribution of a reversible spatially inhomogeneous diffusion process. The geometric macroscopic counterpart of reversibility is encoded into a tensor metrics and a positive function. The Fick's law with inhomogeneous diffusion matrix is obtained in the case when the spatial inhomogeneity is associated exclusively with the edge weights. We discuss also some related properties of the systems like a non-homogeneous Einstein relation and the possibility of uphill diffusion.
引用
收藏
页码:469 / 493
页数:25
相关论文
共 50 条
  • [1] Fick and Fokker–Planck Diffusion Law in Inhomogeneous Media
    D. Andreucci
    E. N. M. Cirillo
    M. Colangeli
    D. Gabrielli
    Journal of Statistical Physics, 2019, 174 : 469 - 493
  • [2] The Fokker-Planck law of diffusion and pattern formation in heterogeneous environments
    Bengfort, Michael
    Malchow, Horst
    Hilker, Frank M.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 73 (03) : 683 - 704
  • [3] Levy anomalous diffusion and fractional Fokker-Planck equation
    Yanovsky, VV
    Chechkin, AV
    Schertzer, D
    Tur, AV
    PHYSICA A, 2000, 282 (1-2): : 13 - 34
  • [4] On symmetries of the Fokker-Planck equation
    Kozlov, Roman
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 39 - 57
  • [5] Analysis of difference schemes for the Fokker-Planck angular diffusion operator
    Pouso, oscar Lopez
    Segura, Javier
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 181 : 84 - 110
  • [6] Generalized Fokker-Planck models of light propagation in layered media
    Phillips, Kevin G.
    Jacques, Steven L.
    OPTICAL INTERACTIONS WITH TISSUE AND CELLS XX, 2009, 7175
  • [7] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    MATHEMATICS, 2017, 5 (01):
  • [8] Fokker-Planck equation in a wedge domain: Anomalous diffusion and survival probability
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [9] Subspace approximation to the cosmic ray Fokker-Planck equation with perpendicular diffusion
    A. Shalchi
    Astrophysics and Space Science, 2021, 366