Fick and Fokker-Planck Diffusion Law in Inhomogeneous Media

被引:26
作者
Andreucci, D. [1 ]
Cirillo, E. N. M. [1 ]
Colangeli, M. [2 ]
Gabrielli, D. [2 ]
机构
[1] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via A Scarpa 16, I-00161 Rome, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
关键词
Diffusion; Fick's law; Fokker-Planck diffusion law; Hydrodynamic limit; EQUATION;
D O I
10.1007/s10955-018-2187-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss particle diffusion in a spatially inhomogeneous medium. From the microscopic viewpoint we consider independent particles randomly evolving on a lattice. We show that the reversibility condition has a discrete geometric interpretation in terms of weights associated to un-oriented edges and vertices. We consider the hydrodynamic diffusive scaling that gives, as a macroscopic evolution equation, the Fokker-Planck equation corresponding to the evolution of the probability distribution of a reversible spatially inhomogeneous diffusion process. The geometric macroscopic counterpart of reversibility is encoded into a tensor metrics and a positive function. The Fick's law with inhomogeneous diffusion matrix is obtained in the case when the spatial inhomogeneity is associated exclusively with the edge weights. We discuss also some related properties of the systems like a non-homogeneous Einstein relation and the possibility of uphill diffusion.
引用
收藏
页码:469 / 493
页数:25
相关论文
共 28 条
[1]   A model for enhanced and selective transport through biological membranes with alternating pores [J].
Andreucci, Daniele ;
Bellaveglia, Dario ;
Cirillo, Emilio Nicola Maria .
MATHEMATICAL BIOSCIENCES, 2014, 257 :42-49
[2]  
[Anonymous], 2009, STOCHASTIC METHODS
[3]  
[Anonymous], 1981, Stochastic Processes in Physics and Chemistry
[4]  
[Anonymous], 1968, TRANSLATIONS MATH MO, DOI DOI 10.1090/MMONO/023
[5]   Macroscopic fluctuation theory [J].
Bertini, Lorenzo ;
De Sole, Alberto ;
Gabrielli, Davide ;
Jona-Lasinio, Giovanni ;
Landim, Claudio .
REVIEWS OF MODERN PHYSICS, 2015, 87 (02) :593-636
[6]   Structures, profile consistency, and transport scaling in electrostatic convection [J].
Bian, NH ;
Garcia, OE .
PHYSICS OF PLASMAS, 2005, 12 (04) :1-12
[7]  
BILLINGSLEY P., 1999, WILEY SERIES PROBABI, Vsecond
[8]  
Cirillo E. N. M., 2018, ARXIV180408392
[9]   Stationary uphill currents in locally perturbed zero-range processes [J].
Cirillo, Emilio N. M. ;
Colangeli, Matteo .
PHYSICAL REVIEW E, 2017, 96 (05)
[10]   Lattice model of reduced jamming by a barrier [J].
Cirillo, Emilio N. M. ;
Krehel, Oleh ;
Muntean, Adrian ;
van Santen, Rutger .
PHYSICAL REVIEW E, 2016, 94 (04)