Fundamental solutions of the general fractional-order diffusion equations

被引:96
作者
Yang, Xiao-Jun [1 ,2 ]
Gao, Feng [1 ]
Ju, Yang [1 ,3 ]
Zhou, Hong-Wei [3 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao, Peoples R China
[3] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
general fractional derivatives; general fractional-order diffusion equation; general Mittag-Leffler function; Prabhakar function; series solution; DERIVATIVES; CALCULUS; MODELS;
D O I
10.1002/mma.5341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the general fractional-order diffusion equations within the negative Prabhakar kernel are considered for the first time. With the aid of the Laplace transform, the series solutions for the problems with the general Mittag-Leffler functions are discussed in detail. The obtained results are efficient in the description of the anomalous behaviors of the diffusive process.
引用
收藏
页码:9312 / 9320
页数:9
相关论文
共 28 条
[1]   Monotone Convergence of Extended Iterative Methods and Fractional Calculus with Applications [J].
Anastassiou, George A. ;
Argyros, Ioannis K. ;
Kumar, Sunil .
FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) :241-253
[2]  
Belgacem F. B. M., 2010, Appl. Math. Sci., V4, P3665
[3]  
Chaurasia V. B. L., 2012, Int J Math Eng Sci Aerosp, V3, P1
[4]  
Chaurasia VBL, 2013, APPL MATH SCI, V5, P899
[5]   Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics [J].
de Oliveira, E. Capelas ;
Mainardi, F. ;
Vaz, J., Jr. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01) :161-171
[6]   Optimal Solutions to Relaxation in Multiple Control Problems of Sobolev Type with Nonlocal Nonlinear Fractional Differential Equations [J].
Debbouche, Amar ;
Nieto, Juan J. ;
Torres, Delfim F. M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (01) :7-31
[7]   Hilfer-Prabhakar derivatives and some applications [J].
Garra, Roberto ;
Gorenflo, Rudolf ;
Polito, Federico ;
Tomovski, Zivorad .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 :576-589
[8]   Wright functions as scale-invariant solutions of the diffusion-wave equation [J].
Gorenflo, R ;
Luchko, Y ;
Mainardi, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :175-191
[9]  
Gorenflo R., 2014, MITTAG LEFFLER FUNCT, DOI DOI 10.1007/978-3-662-43930-2
[10]   FRACTAL RHEOLOGICAL MODELS AND FRACTIONAL DIFFERENTIAL-EQUATIONS FOR VISCOELASTIC BEHAVIOR [J].
HEYMANS, N ;
BAUWENS, JC .
RHEOLOGICA ACTA, 1994, 33 (03) :210-219