The extension for mean curvature flow with finite integral curvature in Riemannian manifolds

被引:7
作者
Xu HongWei [1 ]
Ye Fei [1 ]
Zhao EnTao [1 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
mean curvature flow; Riemannian manifold; maximal existence; integral curvature; SUBMANIFOLDS;
D O I
10.1007/s11425-011-4244-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0, T) can be extended over time T. Moreover, we show that the condition is optimal in some sense.
引用
收藏
页码:2195 / 2204
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 2006, Grad. Stud. Math
[2]   A note on singular time of mean curvature flow [J].
Chen, Jingyi ;
He, Weiyong .
MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (04) :921-931
[3]   Smoothing Riemannian metrics with Ricci curvature bounds [J].
Dai, XZ ;
Wei, GF ;
Ye, RG .
MANUSCRIPTA MATHEMATICA, 1996, 90 (01) :49-61
[4]   SOBOLEV AND ISOPERIMETRIC INEQUALITIES FOR RIEMANNIAN SUBMANIFOLDS [J].
HOFFMAN, D ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (06) :715-727
[5]  
HUISKEN G, 1984, J DIFFER GEOM, V20, P237
[7]   On the extension of the mean curvature flow [J].
Le, Nam Q. ;
Sesum, Natasa .
MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (3-4) :583-604
[9]   Curvature tensor under the Ricci flow [J].
Sesum, N .
AMERICAN JOURNAL OF MATHEMATICS, 2005, 127 (06) :1315-1324
[10]   On the Conditions to Extend Ricci Flow [J].
Wang, Bing .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008